Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Engineering in China - Selected Publications from Chinese Universities  2008, Vol. 2 Issue (3): 276-285   https://doi.org/10.1007/s11705-008-0057-5
  本期目录
Phase separation time/temperature dependence of thermoplastics-modified thermosetting systems
Phase separation time/temperature dependence of thermoplastics-modified thermosetting systems
ZHANG Xiujuan1, XU Yuanze1, YI Xiaosu2
1.The Key Laboratory of Molecular Engineering of Polymers, Ministry of Education, Department of Macromolecular Science, Fudan University; 2.Institute Aeronautic Materials
 全文: PDF(276 KB)   HTML
Abstract:The cure-induced phase separation processes of various thermoplastics(TP)-modified thermosetting systems which show upper critical solution temperature (UCST) or lower critical solution temperature (LCST) were studied with emphasis on the temperature dependency of the phase separation time and its potential application in the cure time-temperature processing window. We found that the phase separation time/temperature relationship follows the simple Arrhenius equation. The cure-induced phase separation activation energy Ea(ps) generated from the linear fitting of the Arrhenius equation is irrelevant to the detection means of phase separation time. We also found that Ea(ps) is insensitive to TP content, TP molecular weight and curing rate, but it changes with the cure reaction kinetics and the chemical environment of the systems. With the established phase separation time-temperature dependence relation, we can easily establish the whole cure time-temperature transformation (TTT) diagram with morphology information which is a useful map for the TP/TS composites processing industry.
出版日期: 2008-09-05
 引用本文:   
. Phase separation time/temperature dependence of thermoplastics-modified thermosetting systems[J]. Frontiers of Chemical Engineering in China - Selected Publications from Chinese Universities, 2008, 2(3): 276-285.
ZHANG Xiujuan, XU Yuanze, YI Xiaosu. Phase separation time/temperature dependence of thermoplastics-modified thermosetting systems. Front. Chem. Sci. Eng., 2008, 2(3): 276-285.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-008-0057-5
https://academic.hep.com.cn/fcse/CN/Y2008/V2/I3/276
1 Inoue T . Reaction-inducedphase-decomposition in polymer blends. Progress in Polymer Science, 1995, 20(1): 119–153.
doi:10.1016/0079‐6700(94)00032‐W
2 Williams R J J, Rozenberg B A, Pascault J P . Reaction-induced phase separation in modified thermosettingpolymers. Polymer Analysis-Polymer Physics, 1997, 128: 95–156.
3 Bucknall C B, Gomez C M, Quintard I . Phase-separation from solutions of poly(ether sulfone)in epoxy-resins. Polymer, 1994, 35(2): 353–359.
doi:10.1016/0032‐3861(94)90703‐X
4 Min B G, Stachurski Z H, Hodgkin J H . Microstructural effects and the toughening of thermoplasticmodified epoxy-resins. Journal of AppliedPolymer Science, 1993, 50(9): 1511–1518.
doi:10.1002/app.1993.070500904
5 Francis B, Rao V L, Jose S, Catherine B K, Ramaswamy R, Jose J, Thomas S . Poly(etherether ketone) with pendent methyl groups as a toughening agent foramine cured DGEBA epoxy resin. Journalof Materials Science, 2006, 41(17): 5467–5479.
doi:10.1007/s10853‐006‐0294‐2
6 Bucknall C B, Gilbert A H . Toughening tetrafunctionalepoxy resins using polyetherimide. Polymer, 1989, 30(2): 213–217.
doi:10.1016/0032‐3861(89)90107‐9
7 Girard-Reydet E, Sautereau H, Pascault J P, Keates P, Navard P, Thollet G, Vigier G . Reaction-induced phase separationmechanisms in modified thermosets. Polymer, 1998, 39(11): 2269–2279.
doi:10.1016/S0032‐3861(97)00425‐4
8 Oyanguren P A, Aizpurua B, Galante M J, Riccardi C C, Cortazar O D, Mondragon I . Design of the ultimate behavior of tetrafunctional epoxiesmodified with polysulfone by controlling microstructure development. Journal of Polymer Science Part B: Polymer Physics, 1999, 37(19): 2711–2725.
doi:10.1002/(SICI)1099‐0488(19991001)37:19<2711::AID‐POLB1>3.0.CO;2‐5
9 Brown J M, Srinivasan S, Rau A, Ward T C, McGrath J E, LoosA C, Hood D, Kranbeuhl D E . Production of controlled networks and morphologies intoughened thermosetting resins using real-time, in situ cure monitoring. Polymer, 1996, 37(9): 1691–1696.
doi:10.1016/0032‐3861(96)83720‐7
10 Qian J Y, Pearson R A, DimonieV L, Shaffer O L, ElAasser S M . The role of dispersed phasemorphology on toughening of epoxies. Polymer, 1997, 38(1): 21–30.
doi:10.1016/S0032‐3861(96)00492‐2
11 Mimura K, Ito H, Fujioka H . Improvement of thermal and mechanical properties by controlof morphologies in PES-modified epoxy resins. Polymer, 2000, 41(12): 4451–4459.
doi:10.1016/S0032‐3861(99)00700‐4
12 Kim H R, Myung B Y, Yoon T H, Song K H . Enhancedfracture toughness of epoxy resins with novel amine-terminated poly(aryleneether sulfone)-carboxylic-terminated butadiene-acrylonitrile-poly(aryleneether sulfone)triblock copolymers. Journalof Applied Polymer Science, 2002, 84(8): 1556–1565..
doi: 10.1002/app.10390
13 Bucknall C B, Partridge I K . Phase-separation in cross-linkedresins containing polymeric modifiers. Polymer Engineering and Science, 1986, 26(1): 54–62.
doi:10.1002/pen.760260110
14 Verchere D, Sautereau H, Pascault J P, Moschiar S M, Riccardi C C, Williams R J J . Miscibility of epoxy monomers with carboxyl-terminatedbutadiene acrylonitrile random copolymers. Polymer, 1989, 30(1): 107–115.
doi:10.1016/0032‐3861(89)90391‐1
15 Riccardi C C, Borrajo J, Williams R J J . Thermodynamic analysis of phase-separation in rubber-modifiedthermosetting polymers-influence of the reactive polymer polydispersity. Polymer, 1994, 35(25): 5541–5550.
doi:10.1016/S0032‐3861(05)80021‐7
16 Riccardi C C, Borrajo J, Williams R J J, GirardReydet E, Sautereau H, Pascault J P . Thermodynamic analysis of the phase separation in polyetherimide-modifiedepoxies. Journal of Polymer Science PartB: Polymer Physics, 1996, 34(2): 349–356.
doi:10.1002/(SICI)1099‐0488(19960130)34:2<349::AID‐POLB16>3.0.CO;2‐J
17 Bonnaud L, Bonnet A, Pascault J P, Sautereau H, Riccardi C C . Different parameters controllingthe initial solubility of two thermoplastics in epoxy reactive solvents. Journal of Applied Polymer Science, 2002, 83(6): 1385–1396.
doi:10.1002/app.10029
18 Tanaka H . Viscoelasticmodel of phase separation. Physical ReviewE, 1997, 56(4): 4451–4462.
doi:10.1103/PhysRevE.56.4451
19 Simon S L, Gillham J K . Thermosetting cure diagram:calculation and application. Journal ofApplied Polymer Science, 1994, 53(4): 709–727.
doi:10.1002/app.1994.070530601
20 Grillet A C, Galy J, Pascault J P . Influence of a 2-step process and of different cure scheduleson the generated morphology of a rubber-modified epoxy system basedon aromatic diamines. Polymer, 1992, 33(1): 34–43.
doi:10.1016/0032‐3861(92)90556‐C
21 Zhang X J, Yi X S, Xu Y Z . Cure induced phase separation of epoxy/DDS/PEK-C compositesand its temperature dependency. Journalof applied polymer science, 2007, accepted
22 Xu J J, Holst M, Rullmann M, Wenzel M, Alig I . Reaction-induced phase separation ina polysulfone-modified epoxy-anhydride thermoset. Journal of Macromolecular Science Part B: Physics, 2007, 46(1): 155–181.
doi:10.1080/00222340601044342
23 Zhang X J, Yi X S, Xu Y Z . Rheology and morphology development during phase separationand gelatin of phenolphthalein polyether Eton modified epoxy resins. In: : 22nd Annual Meeting of the Polymer ProcessingSociety .Yamagata, Japan: Polymer ProcessingSociety, 2006
24 Bonnet A, Pascault J P, Sautereau H, Camberlin Y . Epoxy-diaminethermoset/thermoplastic blends. 2. Rheological behavior before andafter phase separation. Macromolecules, 1999, 32(25): 8524–8530.
doi:10.1021/ma981755h
25 Gan W J, Yu Y F, Wang M H, Tao Q S, Li S J . Viscoelastic effects on the phase separationin thermoplastics-modified epoxy resin. Macromolecules, 2003, 36(20): 7746–7751.
doi:10.1021/ma034649a
26 Zhang X J, Xu Y Z . The rheological and morphologicalstudy of the phase separation and gelation process of TP modifiedTS systems. In: : Advances in Rheology. Jinan, shandaong, China. Shangdong University Press, 2006, 138–144 (in Chinese)
27 Xu Y Z, Zhang X J . Inversed polarized hotstagemicroscope with high resolution, long working distance and high temperatureduration. Chinese patent, 2007200666499
28 Ohnaga T, Chen W J, Inoue T . Structure development by reaction-induced phase-separationin polymer mixtures-computer-simulation of the spinodal decompositionunder the non-isoquench depth. Polymer, 1994, 35(17): 3774–3781.
doi:10.1016/0032‐3861(94)90561‐4
29 Mours M, Winter H H . Time-resolved rheometry. Rheologica Acta, 1994, 33(5): 385–397.
doi:10.1007/BF00366581
30 Chambon F, Petrovic S Z, Macknight J W, Winter H H . Rheologyof model polyurethanes at the gel point. Macromolecules, 1986, 19(8): 2146–2149.
doi:10.1021/ma00162a007
31 Hess W, Vilgis A T, Winter H H . Dynamical critical-behavior during chemical gelationand vulcanization. Macromolecules, 1988, 21(8): 2536–2542.
doi:10.1021/ma00186a037
32 Kissinger H E . Reaction kinetics in differential thermal analysis. Analytical Chemistry. 1957, 29(11): 1702–1706.
doi:10.1021/ac60131a045
33 Chen D, Pascault J P, Sautereau H, Vigier G . Rubber-modifiedepoxies. 2. A reaction-induced phase-separation observed in-situ anda posteriori with different methods. PolymerInternational, 1993, 32(4): 369–379.
doi:10.1002/pi.4990320407
34 Kim B S, Chiba T, Inoue T . A new time-temperature transformation cure diagram forthermoset thermoplastic blend-tetrafunctional epoxy poly(ether sulfone). Polymer, 1993, 34(13): 2809–2815.
doi:10.1016/0032‐3861(93)90125‐T
35 Park S J, Kim H C, Lee J R . Studies on cure kinetics and rheological properties ofdifunctional epoxy/polysulfone blend system. Polymer(Korea). 2001, 25(2): 177–185
36 Francis B, Poel G V, Posada F, Groeninckx G, Rao V L, Ramaswamy R, Thomas S . Cure kineticsand morphology of blends of epoxy resin with poly(ether ketone) containingpendant tertiary butyl groups. Polymer, 2003, 44(13): 3687–3699.
doi:10.1016/S0032‐3861(03)00296‐9
37 Yu Y F, Cui J, Chen W J, Li S J . Studies onthe phase separation of polyetherimide modified tetrafunctional epoxyresin. II. Effects of the molecular weight.Journal of Macromolecular Science: Pure and Applied Chemistry, 1998, 35(1): 121–135.
doi:10.1080/10601329808001965
38 Teng K C, Chang F C . Single-phase and multiple-phasethermoplastic thermoset polyblends. 1. Kinetics and mechanisms ofphenoxy epoxy blends. Polymer, 1993, 34(20): 4291–4299.
doi:10.1016/0032‐3861(93)90191‐C
39 Cui J, Chen W J, Zhang Z C, Li S J . Studies onthe phase separation of polyetherimide-modified epoxy resin. 1. Effectof curing rate on the phase structure. Macromolecular Chemistry and Physics, 1997, 198(6): 1865–1872.
doi:10.1002/macp.1997.021980615
40 Montserrat S, Flaque C, Calafell M, Andreu G, Malek J . Influence of the accelerator concentrationon the curing reaction of an epoxy-anhydride system. Thermochimica Acta, 1995, 269: 213–229.
doi:10.1016/0040‐6031(95)02362‐3
41 Andres M A, Garmendia I, Valea A, Eceiza A, Mondragon I . Fracture toughness of epoxy resins modifiedwith polyethersulfone: Influence of stoichiometry on the morphologyof the mixtures. Journal of Applied PolymerScience, 1998, 69(1): 183–191.
doi:10.1002/(SICI)1097‐4628(19980705)69:1<183::AID‐APP21>3.0.CO;2‐#
42 Yu Y F, Cui J, Chen W J, Li S J . Studies onthe phase separation of poly(ether imide) modified tetrafunctionalepoxy resin: The effect of curing agent ratio. Chemical Journal of Chinese Universities, 1998, 19(5): 808–812 (in Chinese)
43 Reyx D, Campistron I, Caillaud C, Villatte M, Cavedon A . Thermal-reaction betweenN-phenylmaleimide and 2-allylphenol as a model for the cross-linkingreaction in bismaleimide polymerization with diallylbisphenol-A. Macromolecular Chemistry and Physics, 1995, 196(3): 775–785.
doi:10.1002/macp.1995.021960308
44 Mijovic J, Andjelic S . Study of the mechanism andrate of bismaleimide cure by remote in-situ real time fiber opticnear-infrared spectroscopy. Macromolecules, 1996, 29(1): 239–246.
doi:10.1021/ma950550v
45 Shibahara S, Yamamoto T, Motoyoshiya J, Hayashi S . Curingreactions of bismaleimidodiphenylmethane with mono- or di-functionalallylphenols: High resolution solid-state C-13 NMR study. Polymer Journal, 1998, 30(5): 410–413.
doi:10.1295/polymj.30.410
46 Rozenberg A B, Boiko G N, Morgan R J, Shin E E . The curemechanism of the 4,4′-(N,N′-bismaleimide)diphenylmethane-2,2′-diallylbisphenolA system. Polymer Science Series A, 2001, 43(4): 386–399
47 Xiong Y, Boey F Y C, Rath K S . Kinetic study of the curing behavior of bismaleimidemodified with diallylbisphenol A. Journalof Applied Polymer Science, 2003, 90(8): 2229–2240.
doi:10.1002/app.12885
48 Chen D, Pascault J P, Santeria H . Rubber-modified epoxies. 1. Influence of presence ofa low-level of rubber on the polymerization. Polymer International, 1993, 32(4): 361–367.
doi:10.1002/pi.4990320406
49 Kim B S, Chiba T, Inoue T A . New time-temperature transformation cure diagram forthermoset thermoplastic blend-tetrafunctional epoxy poly(ether sulfone). Polymer, 1993, 34(13): 2809–2815.
doi:10.1016/0032‐3861(93)90125‐T
50 Wisanrakkit G, Gillham J K . The glass-transition temperature(Tg) asan index of chemical conversion for a high-Tg amine epoxy system-chemicaland diffusion-controlled reaction-kinetics. Journal of Applied Polymer Science, 1990, 41(11–12): 2885–2929.
doi:10.1002/app.1990.070411129
51 Zhang X J, Yi X S, Xu Y Z . The effect of chemical structure on the phase separationtime/tTemperature dependenciesin some thermoplastics modified thermosetsystems. Acta Polymerica Sinica, accepted (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed