Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2011, Vol. 5 Issue (2): 162-172   https://doi.org/10.1007/s11705-009-0267-5
  REVIEW ARTICLE 本期目录
Simulation of bubble column reactors using CFD coupled with a population balance model
Simulation of bubble column reactors using CFD coupled with a population balance model
Tiefeng WANG()
Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
 全文: PDF(339 KB)   HTML
Abstract

Bubble columns are widely used in chemical and biochemical processes due to their excellent mass and heat transfer characteristics and simple construction. However, their fundamental hydrodynamic behaviors, which are essential for reactor scale-up and design, are still not fully understood. To develop design tools for engineering purposes, much research has been carried out in the area of computational fluid dynamics (CFD) modeling and simulation of gas-liquid flows. Due to the importance of the bubble behavior, the bubble size distribution must be considered in the CFD models. The population balance model (PBM) is an effective approach to predict the bubble size distribution, and great efforts have been made in recent years to couple the PBM into CFD simulations. This article gives a selective review of the modeling and simulation of bubble column reactors using CFD coupled with PBM. Bubble breakup and coalescence models due to different mechanisms are discussed. It is shown that the CFD-PBM coupled model with proper bubble breakup and coalescence models and interphase force formulations has the ability of predicting the complex hydrodynamics in different flow regimes and, thus, provides a unified description of both the homogeneous and heterogeneous regimes. Further study is needed to improve the models of bubble coalescence and breakup, turbulence modification in high gas holdup, and interphase forces of bubble swarms.

Key wordsbubble column    computational fluid dynamics    bubble breakup and coalescence    population balance model    bubble size distribution
收稿日期: 2009-10-12      出版日期: 2011-06-05
Corresponding Author(s): WANG Tiefeng,Email:wangtf@tsinghua.edu.cn   
 引用本文:   
. Simulation of bubble column reactors using CFD coupled with a population balance model[J]. Frontiers of Chemical Science and Engineering, 2011, 5(2): 162-172.
Tiefeng WANG. Simulation of bubble column reactors using CFD coupled with a population balance model. Front Chem Sci Eng, 2011, 5(2): 162-172.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-009-0267-5
https://academic.hep.com.cn/fcse/CN/Y2011/V5/I2/162
Fig.1  
authordaughter size distributionIIIIIIIVVVItypical result
Alentas et al. (1966) Prince et al. (1990)β(fv,d)=δ(fv,0.5)XX?X?XValentas et al. (1966)Lee et al., (1987)
Lee et al. (1987)β(v1,v)=Γ(a+b)Γ(a)Γ(b)v1(v1v)a-1(1-v1v)b-1?X??
Hesketh et al. (1991)β(d1,d)=(1(d1/d)3+B+11-(d1/d)3+B-2(B+0.5))Id3X?X?Hesketh et al. (1991)Nambar et al.(1992)
Nambiar et al. (1992)β(v1,v)=4sin?|π-2?3|f(λ|λmin?λd)πλdsin??????XX
Tsouris et al. (1994)β(d1,d)=emin?+(emax?-e(d1))d1min?d0emin?+(emax?-e(d1))dd1XXX?X?Tsouris et al. (1994)Luo et al.(1996)
Luo et al. (1996)β(fv,d)=2ξmin?1(1+ξ)2ξ-11/3exp?(-χc)dξv01ξmin?1(1+ξ)2ξ-11/3exp?(-χc)dξdfv??X???
Martínez-Bazán et al. (1999)β(d1,d)d=(d?2/3-Λ5/3)((1-d?3)2/9-Λ5/3)dmin??dmax??(d?2/3-Λ5/3)((1-d?3)2/9-Λ5/3)dd????X??Martínez et al. (1999)Lehr et al.(2001)
Lehr et al. (2001)r1(v1,v)=1.5(1-αd)ρc11/5?9/5σ11/5v^1/3v^14/3(min?(v^17/6,1v^17/9)-1v^7/9)#?????X
Tab.1  
Fig.2  
itemsequations
bubble breakup due to turbulent eddiesbreakup rateb(d)=00.5b(fv|d)dfv
daughter bubble size distributionβ(fv,d)=2b(fv|d)(01b(fv|d)dfv)-1
complement equationsb(fv|d)=0.923(1-αd)n?1/3λmindbPb(fv|d,λ)(λ+d)2λ-11/3dλ, Pb(fv|d,λ)=0Pb(fv|d,e(λ),λ)Pe(e(λ))de(λ)Pe(e(λ))=(1/eˉ(λ))exp?(-e(λ)/eˉ(λ)), eˉ(λ)=112πλ3ρcuˉλ2cf,max?=min?((21/3-1),e(λ)/(πd2σ)),fv,min?=(πλ3σ/(6e(λ)d))3, Pb(fv|d,e(λ),λ)={(fv,max?-fv,min?)-1fv,max?-fv,min?δ&fv,min?<fv<fv,max?0else
bubble breakup due to instability of large bubblesbreakup rateb2(d)=b?(d-dc2)m/((d-dc2)m+dc2m)
daughter bubble size distributionβ(fv,d)=2δ(0.5)
coalescence rate due to turbulent eddies: ct = vtPtcollision rate?t(di,dj)=14παg,max?(αg,max?-αg)-1Γij2?1/3(di+dj)2(di2/3+dj2/3)1/2Γij=lbt,ijm/(lbt,ijm+hb,ijm), lbt,ij=lbt,i2+lbt,j2, lbt=0.89db, hb,ij=(Ni+Nj)1/3
coalescence efficiencyPt(di,dj)=exp?(-(0.75(1+ξij2)(1+ξij3))1/2(ρg/ρl+γ)-1(1+ξij)-3Weij1/2)
coalescence rate due to different rise velocity: cu = vuPucollision rate?u(di,dj)=14παg,max?(αg,max?-αg)-12?1/3(di+dj)2(di2/3+dj2/3)1/2
coalescence efficiencyPu(di,dj)=0.5
coalescence due to bubble wake: cw = vwPwcollision rate?w(di,dj)=KΘdi2uˉslip,i?w(di,dj)=15.4di2uˉslip,i, uˉslip,i=0.71gdiΘ=(dj-dc/2)6/((dj-dc/2)6+(dc/2)6)for djdc/2;Θ=0 for dj<dc/2. with dc=4σ/(gΔρ)
coalescence efficiencyPw(di,dj)=exp?(-Kwρl1/2?1/3σ-1/2(didj/(di+dj))5/6)
Tab.2  
Fig.3  
Fig.4  
modelsequations
mass conservation?·(ραu)i=0, i = g, l
momentum conservation?·(ραuu)i=-αi?P+?·(αμeff(?u+?uT))i+Fi,j+(ρα)ig, i = g, l
k-? turbulence model for the liquid phasek equation?·(ρlαlklul)=?·(αl(μlam,l+(μt,l+μtb)/σk)?kl)+αl(Gk,l-ρl?l)
? equation?·(ρlαl?lul)=?·(αl(μlam,l+(μt,l+μtb)/σ?)??l)+αl?lkl(C?1Gk,l-C?2ρl?l)
generation rate and eddy viscosityGk,l=μeff,l?ul·(?ul+(?ul)T)-23?·ul(μeff,l?·ul+ρlkl), μt.l=Cμ(ρlkl2/?l)
turbulence modificationμeff,l=μlam,l+μt,l+μtb, μtb=Cμbρlαgdbs|ug-ul|kl,t=kl+kl,g, ?l,t=?l+?l,g, kl,g=12αgCvmuslip2, ?l,g=αgguslip
turbulent viscosity of the gas phaseμt,g=μt,lρg/ρl
interphase forcesdrag forceFD=i=1Mfiαgρl3CDi4dbi(ug-ul)|ug-ul|, CDi=max?[24Rei-1(1+0.15Re?i0.687),83Eo/(Eo+4)]
virtue mass forceFV=αgρlCVDDt(ug-ul)
transverse lift forceFL=-i=1MfiCLiαgρl(ug-ul)?ul?r, CLi={min?(0.288tanh?(0.121Re?i),f(Eoi))Eoi<3.4f(Eoi)3.4<Eoi<5.3-0.29Eoi>5.3f(Eoi)=0.00925Eoi3-0.0995Eoi2+1.088
turbulent dispersion forceFTD=-CTDαgρlkl?α?r
wall lubrication forceFW=-i=1M12fiCWiαgdbi[(R-r)-2-(R+r)-2]ρl(ug-ul)2
Tab.3  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 Wang T, Wang J, Jin Y. Slurry reactors for gas-to-liquid processes: a review. Industrial & Engineering Chemistry Research , 2007, 46(18): 5824-5847
doi: 10.1021/ie070330t
2 Rafique M, Chen P, Dudukovic M P. Computational modeling of gas-liquid flow in bubble columns. Rev Chem Eng , 2004, 20: 225-375
3 Lehr F, Millies M, Mewes D. Bubble-size distributions and flow fields in bubble columns. AIChE Journal. American Institute of Chemical Engineers , 2002, 48(11): 2426-2443
doi: 10.1002/aic.690481103
4 Jakobsen H A, Lindborg H, Dorao C A. Modeling of bubble column reactors: progress and limitations. Industrial & Engineering Chemistry Research , 2005, 44(14): 5107-5151
doi: 10.1021/ie049447x
5 Bhole M R, Joshi J B, Ramkrishna D. CFD simulation of bubble columns incorporating population balance modeling. Chemical Engineering Science , 2008, 63(8): 2267-2282
doi: 10.1016/j.ces.2008.01.013
6 Wang T, Wang J, Jin Y A. CFD-PBM coupled model for gas-liquid flows. AIChE Journal. American Institute of Chemical Engineers , 2006, 52(1): 125-140
doi: 10.1002/aic.10611
7 Joshi J B. Computational flow modelling and design of bubble column reactors. Chemical Engineering Science , 2001, 56(21-22): 5893-5933
doi: 10.1016/S0009-2509(01)00273-1
8 Tomiyama A, Tamai H, Zun I, Hosokawa S. Transverse migration of single bubbles in simple shear flows. Chemical Engineering Science , 2002, 57(11): 1849-1858
doi: 10.1016/S0009-2509(02)00085-4
9 Ramkrishna D. Population balances. San Diego: Academic Press, 2000
10 Kumar S, Ramkrishna D. On the solution of population balance equations by discretization. 1. A fixed pivot technique. Chemical Engineering Science , 1996, 51(8): 1311-1332
doi: 10.1016/0009-2509(96)88489-2
11 Wang T, Wang J, Jin Y. Population balance model for gas-liquid flows: influence of bubble coalescence and breakup models. Industrial & Engineering Chemistry Research , 2005, 44(19): 7540-7549
doi: 10.1021/ie0489002
12 Liao Y X, Lucas D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chemical Engineering Science , 2009, 64(15): 3389-3406
doi: 10.1016/j.ces.2009.04.026
13 Lasheras J C, Eastwood C, Martinez-Bazan C, Montanes J L. A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow. International Journal of Multiphase Flow , 2002, 28(2): 247-278
doi: 10.1016/S0301-9322(01)00046-5
14 Wang T F, Wang J F, Jin Y. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow. Chemical Engineering Science , 2003, 58(20): 4629-4637
doi: 10.1016/j.ces.2003.07.009
15 Alopaeus V, Koskinen J, Keskinen K I, Majander J. Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 2. Parameter fitting and the use of the multiblock model for dense dispersions. Chemical Engineering Science , 2002, 57(10): 1815-1825
doi: 10.1016/S0009-2509(02)00067-2
16 Luo H, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE Journal. American Institute of Chemical Engineers , 1996, 42(5): 1225-1233
doi: 10.1002/aic.690420505
17 Kostoglou M, Karabelas A J. Toward a unified framework for the derivation of breakage functions based on the statistical theory of turbulence. Chemical Engineering Science , 2005, 60(23): 6584-6595
doi: 10.1016/j.ces.2005.05.051
18 Wang T F, Wang J F, Jin J. An efficient numerical algorithm for “A novel theoretical breakup kernel function of bubble/droplet in a turbulent flow”. Chemical Engineering Science , 2004, 59(12): 2593-2595
doi: 10.1016/j.ces.2004.03.011
19 Martínez-Bazán C, Montanes J L, Lasheras J C. On the breakup of an air bubble injected into a fully developed turbulent flow. Part 2. Size PDF of the resulting daughter bubbles. Journal of Fluid Mechanics , 1999, 401: 183-207
doi: 10.1017/S0022112099006692
20 Fu X Y, Ishii M. Two-group interfacial area transport in vertical air-water flow. I. Mechanistic model. Nuclear Engineering and Design , 2003, 219(2): 143-168
doi: 10.1016/S0029-5493(02)00285-6
21 Wang T, Wang J, Jin Y. Theoretical prediction of flow regime transition in bubble columns by the population balance model. Chemical Engineering Science , 2005, 60(22): 6199-6209
doi: 10.1016/j.ces.2005.04.027
22 Prince M J, Blanch H W. Bubble coalescence and break-up in air-sparged bubble-columns. AIChE Journal. American Institute of Chemical Engineers , 1990, 36(10): 1485-1499
doi: 10.1002/aic.690361004
23 Sha Z, Laari A, Turunen I. Multi-phase-multi-size group model for the inclusion of population balances into the CFD simulation of gas-liquid bubbly flows. Chemical Engineering & Technology , 2006, 29(5): 550-559
doi: 10.1002/ceat.200500386
24 Wang T, Wang J. Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model. Chemical Engineering Science , 2007, 62(24): 7107-7118
doi: 10.1016/j.ces.2007.08.033
25 Ekambara K, Nandakumar K, Joshi J B. CFD simulation of bubble column reactor using population balance. Industrial & Engineering Chemistry Research , 2008, 47(21): 8505-8516
doi: 10.1021/ie071393e
26 Degaleesan S, Dudukovic M, Pan Y. Experimental study of gas-induced liquid-flow structures in bubble columns. AIChE Journal. American Institute of Chemical Engineers , 2001, 47(9): 1913-1931
doi: 10.1002/aic.690470904
27 Koynov A, Khinast J G, Tryggvason G. Mass transfer and chemical reactions in bubble swarms with dynamic interfaces. AIChE Journal. American Institute of Chemical Engineers , 2005, 51(10): 2786-2800
doi: 10.1002/aic.10529
28 Zhao H, Ge W. A theoretical bubble breakup model for slurry beds or three-phase fluidized beds under high pressure. Chemical Engineering Science , 2007, 62(1-2): 109-115
doi: 10.1016/j.ces.2006.08.008
29 Troshko A A, Zdravistch F. CFD modeling of slurry bubble column reactors for Fisher-Tropsch synthesis. Chemical Engineering Science , 2009, 64(5): 892-903
doi: 10.1016/j.ces.2008.10.022
30 Cheung S C P, Yeoh G H, Tu J Y. Population balance modeling of bubbly flows considering the hydrodynamics and thermomechanical processes. AIChE Journal. American Institute of Chemical Engineers , 2008, 54(7): 1689-1710
doi: 10.1002/aic.11503
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed