Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Front. Chem. Sci. Eng.  2010, Vol. 4 Issue (3): 242-249   https://doi.org/10.1007/s11705-009-0277-3
  Research articles 本期目录
CFD simulation of jet behaviors in a binary gas-solid fluidized bed: comparisons with experiments
CFD simulation of jet behaviors in a binary gas-solid fluidized bed: comparisons with experiments
Pei PEI1,Guiying WU1,Bangting YU1,Kai ZHANG2,Jianchun JIANG3,Dongsheng WEN4,
1.State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; 2.State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China;National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, China; 3.Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; 4.School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK;
 全文: PDF(377 KB)  
Abstract:Based on the experimental observation of the fluidization characteristics of solid mixtures (resin and rapeseed) with different densities and sizes, the jet behaviours of the binary system are simulated in a two-dimensional jetting fluidized bed 0.30 m in width and 2.00 m in height. A simple mathematical model, by introducing two additional force terms in both gas and particle phase momentum equations of Gidaspow’s inviscid two-fluid model, is used to explore the effects of jet gas velocity and mixture combination on the jet penetration depth in the fluidized bed with a binary system. Experimental results show that there is a fluidization velocity interval (uif-uff) for the resin-on-rapeseed (flotsam-on-jetsam) segregated bed. The simulated jet penetration depth increases with the increase of jet gas velocity and the volume fraction of the flotsam (resin), which is in fair agreement with experimental data. The above findings show that the hydrodynamic model of Brandani and Zhang (2006), by introducing the average physical properties from Goossens et al.(1971), can be used to predict the jet behaviors of a well-mixing binary system.
出版日期: 2010-09-05
 引用本文:   
. CFD simulation of jet behaviors in a binary gas-solid fluidized bed: comparisons with experiments[J]. Front. Chem. Sci. Eng., 2010, 4(3): 242-249.
Pei PEI, Guiying WU, Bangting YU, Kai ZHANG, Jianchun JIANG, Dongsheng WEN, . CFD simulation of jet behaviors in a binary gas-solid fluidized bed: comparisons with experiments. Front. Chem. Sci. Eng., 2010, 4(3): 242-249.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-009-0277-3
https://academic.hep.com.cn/fcse/CN/Y2010/V4/I3/242
Mclendona T R, Luib A P, Pineaulta R L, Beera S K, Richardsona S W. High-pressure co-gasification of coal and biomass in a fluidizedbed. Biomass and Bioenergy, 2004, 263: 377–388

doi: 10.1016/j.biombioe.2003.08.003
Bi J, Luo C, Aoki K, Uemiya S, Kojima T. A numerical simulation ofa jetting fluidized bed coal gasifier. Fuel, 1997, 76: 285–301

doi: 10.1016/S0016-2361(96)00218-9
Zhang K, Zhang J Y, Zhang B J. Hydrodynamics in a cold-model jettingfluidized bed gasifier with a binary mixture. Journal of Fuel Chemistry and Technology, 2004, 32: 699–704
Rowe P N, Nienow A W, Agbim A J. The mechanisms by which particlessegregate in gas fluidized beds-binary systems of near-spherical particles. Trans Instn Chem Engrs, 1972, 50: 310–323
Chiba S, Chiba T, Nienow A W, Kobayashi H. Theminimum fluidization velocity, bed expansion and pressure-drop profileof binary particle mixtures. Powder Technology, 1979, 22: 255–269

doi: 10.1016/0032-5910(79)80031-5
Knowlton T M, Karri S B R, Issangya A. Scale-up of fluidized-bed hydrodynamics. Powder Technology, 2005, 150: 72–77

doi: 10.1016/j.powtec.2004.11.036
Kwauk M, Li H. Handbook ofFluidization. Beijing: Chemical Industry Press. 2007, 116 (in Chinese)
Li J H, Ou Y J, Gao S Q, Ge W, Yang N, Song W L. Multi-scale Simulation of Particle-fluid Complex Systems. Beijing: Science Press, 2005, 37–40 (in Chinese)
Zhang K, Zhang H, Lovick J, Zhang J Y, Zhang B J. Numerical computation andexperimental verification of the jet region in a fluidized bed. Ind Eng Chem Res, 2002, 41: 3696–3704

doi: 10.1021/ie010962u
Wang Q C, Zhang K, Sun G G, Brandani S, Gao J S, Jiang J C, CFD simulation of fluid dynamics in a gas-solid jettingfluidized bed. Int J of Chem Reactor Eng, 2007, 5: A112

doi: 10.2202/1542-6580.1509
Hong R Y, Guo Q J, Luo G H, Zhang J Y, Ding J. On the jet penetration heightin fluidized beds with two vertical jets. Powder Technology, 2003, 133: 216–227

doi: 10.1016/S0032-5910(03)00107-4
Pei P, Wang Q C, Zhang K, Wen D S. Effects of grid scale, time step and maximum solid volume fractionon CFD simulation in a jetting fluidized bed. The Chinese Journal of Process Engineering, 2008, 8: 1057–1063 (in Chinese)
Zhang K, Zhang J Y, Zhang B J. Experimental and numerical study of fluiddynamic parameters in a jetting fluidized bed of a binary mixture. Powder Technology, 2003, 132: 30–38
Guo Q J, Yue G X, Zhang J Y, Liu Z Y. Hydrodynamic characteristics of a two-dimensional jetting fluidizedbed with binary mixtures. Chemical EngineeringScience, 2001, 56: 4685–4694

doi: 10.1016/S0009-2509(01)00117-8
Luo G H, Zhang J Y, Zhang B J. The jet penetration depth in a fluidizedbed of multi-component particles. J ofChem Ind & Eng, 1996, 47: 91–99
Naimer N S, Chiba T, Nienow A W. Parameter estimation for a solids mixing/segregationmodel for gas fluidized beds. ChemicalEngineering Science, 1982, 37: 1047–1057

doi: 10.1016/0009-2509(82)80135-8
Cooper S, Coronella C J. CFD simulations of particle mixing in a binary fluidized bed. Powder Technology, 2005, 151: 27–36

doi: 10.1016/j.powtec.2004.11.041
Rasul M G, Rudolph V, Wang F Y. Particles separation usingfluidization techniques. Int J Miner Process, 2000, 60: 163–179

doi: 10.1016/S0301-7516(00)00016-8
Shannon P T. Dissertation for the Doctoral Degree. Chicago: Illionis Inst Technol, 1961
Zhang J Y, Peng H. FluidizationVIII. In: International Symposium of theEngineering Foundation. France: Tours, 1995, 791
Foscolo P U, Gibilaro L G. Fluid dynamics stability of fluidized suspensions: the particle bedmodel. Chem Eng Sci, 1987, 42: 1489–1500

doi: 10.1016/0009-2509(87)85021-2
Chen Z, Gibilaro L G, Foscolo P U. Two-dimensional voidage wavesin fluidized beds. Ind Eng Chem Res, 1999, 38: 610–620

doi: 10.1021/ie980418u
Gibilaro L. Fluidization Dynamics. London: Butterworth Heinemann, 2001
Brandani S, Zhang K. A new modelfor the prediction of the behaviour of fluidized beds. Powder Technology, 2006, 163: 80–87

doi: 10.1016/j.powtec.2006.01.011
Zhang K, Brandani S. Amodel based on two-fluid theory for predicting hydrodynamics behaviorin 3D fluidized beds.I. Homogeneous or budding fluidization of gassolid system. J of Chem Ind & Eng (China), 2008, 59: 1191–1199 (in Chinese)
Gidaspow D. Multiphase Flow and Fluidization: Continuum and KineticTheory Description. New York: Academic Press, 1994, 150
Wallis G G. One-Dimensional Two-Phase Flow. New York: McGraw-Hill, 1969
Zhang J Y, Luo G H, Peng H. Particle segregation of a binary mixturein gas fluidized bed. In: FLUIDIZATION’94Science and Technology, Conference Paper of 5th China-Japan Symposium. Beijing: Chemical Industry Press, 1994, 15–22
Luo G H. A study on particle segregation and jet flow behaviorin gas fluidized beds. Dissertation forthe Doctoral Degree. Beijing: Institute of Coal Chemistry, Chinese Academy ofSciences, 1996 (in Chinese)
Guo Q J. Study on flow characteristics in the multi-jet jettingfluidized bed. Dissertation for the DoctoralDegree. Beijing: Institute of Coal Chemistry, Chinese Academy ofSciences, 1999 (in Chinese)
Goossens W R A, Dumont G L, Spaepen G J. Fluidization of binary mixturesin the laminar flow region. Chem Eng ProgrSymp Ser, 1971, 67: 38–45
Formisani B, Girimonte R, Longo T. The fluidization processof binary mixtures of solids: development of the approach based onthe fluidization velocity interval. PowderTechnology, 2008, 185: 97–108

doi: 10.1016/j.powtec.2007.10.003
Knowlton T M, Hirsan I. TheEffect of Pressure on Jet Penetration Depth in Semi-cylindrical Gas-fluidizedBeds. In: Grace J R, Matsen J M, eds. Fluidization III. New York: Plenum Press, 1980, 31d5
Musmarra D. Influence of particle size and density on the jet penetrationlength in gas fluidized beds. Industrial& Engineering Chemistry Research, 2000, 39: 2612–2617

doi: 10.1021/ie9907831
Gidaspow D, Ettehadleh B. Fluidizationin two-dimensional beds with a jet. 2: Hydrodynamic modeling. Industrial & Engineering Chemistry Fundamentals, 1982, 22: 193–201

doi: 10.1021/i100010a008
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed