Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Front. Chem. Sci. Eng.  2010, Vol. 4 Issue (1): 26-36   https://doi.org/10.1007/s11705-009-0292-4
  Research articles 本期目录
Synthesis of crystals and particles by crystallization and polymerization in droplet-based microfluidic devices
Synthesis of crystals and particles by crystallization and polymerization in droplet-based microfluidic devices
Jingtao WANG,Jin ZHANG,Junjie HAN,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
 全文: PDF(326 KB)  
Abstract:The recent advances in crystallization and polymerization assisted by droplet-based microfluidics to synthesize micro-particles and micro-crystals are reviewed in this paper. Droplet-based microfluidic devices are powerful tools to execute some precise controls and operations on the flow inside microchannels by adjusting fluid dynamics parameters to produce monodisperse emulsions or multiple-emulsions of various materials. Major features of this technique are producing particles of monodispersity to control the shape of particles in a new level, and to generate droplets of diverse materials including aqueous solutions, gels and polymers. Numerous microfluidic devices have been employed to generate monodisperse droplets of range from nm to μm, such as T junctions, flow-focusing devices and co-flow or cross-flow capillaries. These discrete, independently controllable droplets are ideal microreactors to be manipulated in the channels to synthesize the nanocrystals, protein crystals, polymer particles and microcapsules. The generated monodisperse particles or crystals are to meet different technical demands in many fields, such as crystal engineering, encapsulation and drug delivery systems. Microfluidic devices are promising tools in the synthesis of micron polymer particles that have diverse applications such as the photonic materials, ion-exchange and chromatography columns, and field-responsive rheological fluids. Processes assisted by microfluidic devices are able to produce the polymer particles (including Janus particles) with precise control over their sizes, size distribution, morphology and compositions. The technology of microfluidics has also been employed to generate core-shell microcapsules and solid microgels with precise controlled sizes and inner structures. The chosen “smart” materials are sensitive to an external stimulus such as the change of the pH, electric field and temperature. These complex particles are also able to be functionalized by encapsulating nanoparticles of special functions and by attaching some special groups like targeting ligands. The nucleation kinetics of some crystals like KNO3 was investigated in different microfluidic devices. Because of the elimination of the interactions among crystallites in bulk systems, using independent droplets may help to measure the nucleation rate more accurately. In structural biology, the droplets produced in microfluidic devices provide ideal platforms for protein crystallization on the nanoliter scale. Therefore, they become one of the promising tools to screen the optimal conditions of protein crystallization.
出版日期: 2010-03-05
 引用本文:   
. Synthesis of crystals and particles by crystallization and polymerization in droplet-based microfluidic devices[J]. Front. Chem. Sci. Eng., 2010, 4(1): 26-36.
Jingtao WANG, Jin ZHANG, Junjie HAN, . Synthesis of crystals and particles by crystallization and polymerization in droplet-based microfluidic devices. Front. Chem. Sci. Eng., 2010, 4(1): 26-36.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-009-0292-4
https://academic.hep.com.cn/fcse/CN/Y2010/V4/I1/26
Whitesides G M. The origins and the future of microfluidics. Nature, 2006, 442: 368―373

doi: 10.1038/nature05058
McDonald J C, Duffy D C, Anderson J R, Chiu D T, Wu H K, Schueller O J A, Whitesides G M. Fabrication of microfluidicsystems in poly(dimethylsiloxane). Electrophoresis, 2000, 21: 27―40

doi: 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
Lu Y, Yin Y D, Xia Y N. Three-dimensional photonic crystals with non-sphericalcolloids as building blocks. Adv Mater, 2001, 13: 415―420

doi: 10.1002/1521-4095(200103)13:6<415::AID-ADMA415>3.0.CO;2-O
Glotzer S C, Solomon M J. Anisotropy of building blocksand their assembly into complex structures. Nature materials, 2007, 6: 557―562

doi: 10.1038/nmat1949
McPherson A. Introductionto protein crystallization. Methods, 2004, 34: 254―265

doi: 10.1016/j.ymeth.2004.03.019
Oh J K, Drumright R, Siegwartb D J, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci, 2008, 33: 448―477

doi: 10.1016/j.progpolymsci.2008.01.002
Utada A S, Chu L Y, Fernandez-Nieves A, Link D R, Holtze C, Weitz D A. Dripping, jetting, drops, and wetting the magic of microfluidics. MRS Bull, 2007, 32: 702―708
Serra1 C A, Chang Z Q. Microfluidic-assisted synthesisof polymer particles. Chem Eng Technol, 2008, 31(8): 1099―1115

doi: 10.1002/ceat.200800219
Link D R, Anna S L, Weitz D A, Stone H A. Geometricallymediated breakup of drops in microfluidic devices. Phys Rev Lett, 2004, 92: 054503-1―054503-4
Kawakatsu T, Kikuchi Y, Nakajima M. Regular-sized cell creation in microchannel emulsificationby visual microprocessing method. J AmOil Chem Soc, 1997, 74(3): 317―321

doi: 10.1007/s11746-997-0143-8
Thorsen T, Roberts R W, Arnold F H, Quake S R. Dynamicpattern formation in a vesicle-generating microfluidic device. Phys Rev Lett, 2001, 86: 4163―4166

doi: 10.1103/PhysRevLett.86.4163
Anna S L, Bontoux N, Stone H A. Formation of dispersions using ‘‘flow focusing’’in microchannels. Appl Phys Lett, 2003, 82: 364―366

doi: 10.1063/1.1537519
Jeong W J, Kim J Y, Choo J, Lee E K, Han C S, Beebe D J, Seong G H, Lee S H. Continuous fabrication of biocatalyst immobilized microparticlesusing photopolymerization and immiscible liquids in microfluidic systems. Langmuir, 2005, 21: 3738―3741

doi: 10.1021/la050105l
Quevedo E, Steinbacher J, McQuade D T. Interfacial polymerization within a simplified microfluidicdevice: capturing capsules. J Am Chem Soc, 2005, 127: 10498―10499

doi: 10.1021/ja0529945
Takeuchi S, Garstecki P, Weibel D B, Whitesides G M. An axisymmetric flow-focusing microfluidic device. Adv Mater, 2005, 17(8): 1067―1072

doi: 10.1002/adma.200401738
Shah R K, Shum H C, Rowat A C, Lee D Y, Agresti J J, Utada A S, Chu L Y, Kim J W, Alberto F N, Martinez C J, Weitz D A. Designer emulsions using microfluidics. Materials Today, 2008, 11: 18―27

doi: 10.1016/S1369-7021(08)70053-1
Engl W, Backov R, Panizza P. Controlled production of emulsions and particles by milli-and microfluidic techniques. Current Opinionin Colloid & Interface Science, 2008, 13: 206―216

doi: 10.1016/j.cocis.2007.09.003
Okushima S, Nisisako T, Torii T, Higuchi T. Controlled production of monodisperse double emulsions by two-stepdroplet break-up in microfluidic devices. Langmuir, 2004, 20: 9905―9908

doi: 10.1021/la0480336
Seo M, Paquet C, Nie Z H, Xu S Q, Kumacheva E. Microfluidic consecutiveflow-focusing droplet generators. SoftMatter, 2007, 3: 986―992

doi: 10.1039/b700687j
Utada A S, Lorenceau E, Link D R, Kaplan P D, Stone H A, Weitz D A. Monodisperse double emulsions generated from a microcapillary device. Science, 2005, 308: 537―541

doi: 10.1126/science.1109164
Nie Z H, Xu S Q, Seo M, Lewis P C, KumachevaE. Polymer particles with various shapes and morphologies producedin continuous microfluidic reactors. JAm Chem Soc, 2005, 127: 8058―8063

doi: 10.1021/ja042494w
Chu L Y, Utada A S, Shah R K, Kim J W, Weitz D A. Controllable monodisperse multiple emulsions. Angew Chem Int Ed, 2007, 46: 8970―8974

doi: 10.1002/anie.200701358
Panizza P, Engl W, Hany C, Backov R. Controlledproduction of hierarchically organized large emulsions and particlesusing assemblies on line of coaxial flow devices. Colloids Surf, A Physicochem Eng Asp, 2008, 312: 24―31

doi: 10.1016/j.colsurfa.2007.06.026
Nisisako T, Torii T, Higuchi T. Novel microreactors for functional polymer beads. Chem Eng J, 2004, 101: 23―29

doi: 10.1016/j.cej.2003.11.019
Dendukuri D, Tsoi K, Hatton T A, Doyle P S. Controlledsynthesis of nonspherical microparticles using microfluidics. Langmuir, 2005, 21: 2113―2116

doi: 10.1021/la047368k
Xu S Q, Nie Z, Seo M, Lewis P, Kumacheva E, Stone H A, Garstecki P, Weibel D B, Gitlin I, Whitesides G M. Generation of monodisperse particles by using microfluidics: controlover size, shape and composition. AngewChem Int Ed, 2005, 44: 724―728

doi: 10.1002/anie.200462226
Lewis P C, Graham R R, Nie Z H, Xu S Q, Seo M, Kumacheva E. Continuous synthesis of copolymer particles in microfluidic reactors. Macromolecules, 2005, 38: 4536―4538

doi: 10.1021/ma050101n
Seo M, Nie Z H, Xu S Q, Mok M, Lewis P C, Graham R R, Kumacheva E. Continuous microfluidic reactorsfor polymer particles. Langmuir, 2005, 21: 11614―11622

doi: 10.1021/la050519e
Dubinsky S, Zhang H, Nie Z H, Gourevich I, Voicu D, Deetz M, Kumacheva E, Microfluidic synthesis of macroporous copolymer particles. Macromolecules, 2008, 41: 3555―3561

doi: 10.1021/ma800300d
Jeong, W, Kim J Y, Kim S J, Lee S H, Mensing G, Beebe D J. Hydrodynamic microfabrication via “on the fly” photopolymerizationof microscale fibers and tubes. Lab chip, 2004, 4: 576―580

doi: 10.1039/b411249k
Engl W, Tachibana M, Panizza P, Backov R. Millifluidicas a versatile reactor to tune size and aspect ratio of large polymerizedobjects. International Journal of MultiphaseFlow, 2007, 33: 897―903

doi: 10.1016/j.ijmultiphaseflow.2007.03.007
Perro A, Reculusa S, Ravaine S, Bourgeat-Lami E, Duguet E. Design and synthesis of Janusmicro- and nanoparticles. J Mater Chem, 2005, 15: 3745―3760

doi: 10.1039/b505099e
Nisisako T, Torii T, Takahashi T, Takizawa Y. Synthesis of monodisperse bicolored Janus particles with electricalanisotropy using a microfluidic co-flow system. Adv Mater, 2006, 18: 1152―1156

doi: 10.1002/adma.200502431
Nisisako T, Torii T. Formation of biphasic Janusdroplets in a microfabricated channel for the synthesis of shape-controlledpolymer microparticles. Adv Mater, 2007, 19: 1489―1493

doi: 10.1002/adma.200700272
Nie Z, Li W, Seo M, Xu S Q, Kumacheva E. Janus and ternary particlesgenerated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc, 2006, 128: 9408―9412

doi: 10.1021/ja060882n
Shepherd R F, Conrad J C, Rhodes S K, Link D R, Marquez M, Weitz D A, Lewis J A. Microfluidic assembly ofhomogeneous and Janus colloid-filled hydrogel granules. Langmuir, 2006, 22: 8618―8622

doi: 10.1021/la060759+
Kim S H, Jeon S J, Jeong W C, Park H S, Yang S M. Optofluidic synthesis of electroresponsivephotonic Janus balls with isotropic structural colors. Adv Mater, 2008, 20: 4129―4134
Shah R K, Kim J W, Weitz D A. Janus supraparticles by induced phase separation of nanoparticlesin droplets. Adv Mater, 2009, 21: 1949―1953

doi: 10.1002/adma.200803115
Chen C H, Shah R K, Abate A R, Weitz D A. Janus particlestemplated from double Emulsion droplets generated using microfluidics. Langmuir, 2009, 25(8): 4320―4323

doi: 10.1021/la900240y
Gong X Q, Peng S L, Wen W J, Sheng P, Li W H. Design and fabrication of magneticallyfunctionalized core/shell microspheres for smart drug delivery. Adv Funct Mater, 2009, 19: 292―297

doi: 10.1002/adfm.200801315
Eun T H, Kim S H, Jeong W J, Jeon S J, Kim S H, Yang S M. Single-step fabrication of monodisperse TiO2 hollow spheres with embedded nanoparticles in microfluidic devices. Chem Mater, 2009, 21: 201―203

doi: 10.1021/cm8017133
Geest B G De, Urbanski J P, Thorsen T, Demeester J, De Smedt S C. Synthesis of monodispersebiodegradable microgels in microfluidic devices. Langmuir, 2005, 21: 10275―10279

doi: 10.1021/la051527y
Kim J W, Utada A S, Fernandez-Nieves A, Hu Z B, Weitz D A. Fabrication of monodispersegel shells and functional microgels in microfluidic devices. Angew Chem Int Ed, 2007, 46: 1819―1822

doi: 10.1002/anie.200604206
Chang J Y, Yang C H, Huang K S. Microfluidic assisted preparation of CdSe/ZnS nanocrystalsencapsulated into poly(DL-lactide-co-glycolide)microcapsules. Nanotechnology, 2007, 18: 305305-1―305305-8
Chu L Y, Kim J W, Shah R K, Weitz D A. Monodispersethermoresponsive microgels with tunable volume-phase transition kinetics. Adv Funct Mater, 2007, 17: 3499―3504

doi: 10.1002/adfm.200700379
Zhang H, Tumarkin E, Peerani R, Nie Z H, Sullan R M A, Walker G C, Kumacheva E. Microfluidicproduction of biopolymer microcapsules with controlled morphology. J Am Chem Soc, 2006, 128: 12205―12210

doi: 10.1021/ja0635682
Tan W H, Takeuchi S. Monodisperse alginate hydrogelmicrobeads for cell encapsulation. AdvMater, 2007, 19: 2696―2701

doi: 10.1002/adma.200700433
Zhang H, Tumarkin E, Sullan R M A, Walker G C, Kumacheva E. Exploring microfluidic routesto microgels of biological polymers. MacromolRapid Commun, 2007, 28: 527―538

doi: 10.1002/marc.200600776
Liu K, Ding H J, Liu J, Chen Y, Zhao X Z. Shape-controlled production of biodegradablecalcium alginate gel microparticles using a novel microfluidic device. Langmuir, 2006, 22: 9453―9457

doi: 10.1021/la061729+
Rondeau E, Cooper-White J J. Biopolymer microparticleand nanoparticle formation within a microfluidic device. Langmuir, 2008, 24: 6937―6945

doi: 10.1021/la703339u
Xu J H, Li S W, Tan J, Luo G S. Controllablepreparation of monodispersed calcium alginate microbeads in a novelmicrofluidic system. Chem Eng Technol, 2008, 31: 1223―1226

doi: 10.1002/ceat.200800027
Yeh C H, Zhao Q L, Lee S J, Lin Y C. Using aT-junction microfluidic chip for monodisperse calcium alginate microparticlesand encapsulation of nanoparticles. Sensorsand Actuators A, 2009, 151: 231―236

doi: 10.1016/j.sna.2009.02.036
Leng J, Salmon J. Microfluidic crystallization. Lab Chip, 2009, 9: 24―34

doi: 10.1039/b807653g
Kashchiev D, Kaneko N, Sato K. Kinetics of crystallization in polydisperse emulsions. J Colloid Interface Sci, 1998, 208: 167―177

doi: 10.1006/jcis.1998.5760
Dombrowski R D, Litster J D, Wagner N J, He Y H. Crystallizationof alpha-lactose monohydrate in a drop-based microfluidic crystallizer. Chem Eng Sci, 2007, 62: 4802―4810

doi: 10.1016/j.ces.2007.05.033
Gong T, Shen J Y, Hu Z B, Marquez M, Cheng Z D. Nucleation rate measurementof colloidal crystallization using microfluidic emulsion droplets. Langmuir, 2007, 23: 2919―2923

doi: 10.1021/la063070d
Laval P, Lisai N, Salmon J B, Joanicot M. A microfluidic device based on droplet storage for screening solubilitydiagrams. Lab Chip, 2007, 7: 829―834

doi: 10.1039/b700799j
Laval P, Giroux C, Leng J. Microfluidic screening of potassium nitrate polymorphism. Journal of Crystal Growth, 2008, 310: 3121―3124

doi: 10.1016/j.jcrysgro.2008.03.009
Laval P, Salmon J B, Joanicot M. A microfluidic device for investigating crystal nucleationkinetics. Journal of Crystal Growth, 2007, 303: 622―628

doi: 10.1016/j.jcrysgro.2006.12.044
Laval P, Crombez A, Salmon J B. Microfluidic droplet method for nucleation kinetics measurements. Langmuir, 2009, 25: 1836―1841

doi: 10.1021/la802695r
Hansen C, Quake S R. Microfluidics in structuralbiology: smaller, faster, better. Currentopinion in structural biology, 2003, 13: 538―544

doi: 10.1016/j.sbi.2003.09.010
Zheng B, Gerdts C J, Ismagilov R F. Using nanoliter plugs in microfluidics to facilitateand understand protein crystallization. Current opinion in structural biology, 2005, 15: 548―555

doi: 10.1016/j.sbi.2005.08.009
Zheng B, Roach L S, Ismagilov R F. Screening of protein crystallization conditions on amicrofluidic chip using nanoliter-size droplets. J Am Chem Soc, 2003, 125: 11170―11171

doi: 10.1021/ja037166v
Zheng B, Tice J D, Roach L S, Ismagilov R F. A droplet-based, composite PDMS/glass capillary microfluidic systemfor evaluating protein crystallization conditions by microbatch andvapor-diffusion methods with on-chip X-ray diffraction. Angew Chem Int Ed, 2004, 43: 2508―2511

doi: 10.1002/anie.200453974
Zheng B, Tice J D, Ismagilov R F. Formation of arrayed droplets of soft lithography andtwo-phase fluid flow, and application in protein crystallization. Adv Mater, 2004, 16 (15): 1365―1368

doi: 10.1002/adma.200400590
Zheng B, Tice J D, Ismagilov R F. Formation of droplets of in microfluidic channels alternatingcomposition and applications to indexing of concentrations in droplet-basedassays. Anal Chem, 2004, 76, 4977―4982

doi: 10.1021/ac0495743
Zheng B, Ismagilov R F. A microfluidic approach forscreening submicroliter volumes against multiple reagents by usingpreformed arrays of nanoliter plugs in a three-phase liquid/liquid/gasflow. Angew Chem Int Ed Engl, 2005, 44: 2520―2523

doi: 10.1002/anie.200462857
Chen D L, Gerdts C J, Ismagilov R F. Using microfluidics to observe the effect of mixing onnucleation of protein crystals. J Am ChemSoc, 2005, 127: 9672―9673

doi: 10.1021/ja052279v
Chen D L, Li L, Reyes S, Adamson D N, Ismagilov R F. Using three-phase flow ofimmiscible liquids to prevent coalescence of droplets in microfluidicchannels: criteria to identify the third liquid and validation withprotein crystallization. Langmuir, 2007, 23: 2255―2260

doi: 10.1021/la062152z
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed