Abstract:Xylitol, a five-carbon sugar alcohol, is a valuable sugar substitute, and widely used in the pharmaceutical, odontological and food industry due to its interesting properties. In the past decades, the xylitol industry has grown rapidly and more attention has been focused on xylitol purification, which possesses an important proportion of the whole industry. In our paper, the purification and crystallization of xylitol fermentation broth by biotechnology using corncob hydrolysates as substance were studied. An initial xylitol fermentation broth was decolored with activated carbon (1% M-1, 60°C, 165rpm), desalted with a combination of two ion-exchange resins (732 and D301), and residual sugars were separated with UBK-555(Ca2+). Then the solution was vacuum-concentrated up to supersaturation (750g/L xylitol). After adding 1% xylitol crystal seeds, the supersaturated solution was cooled to −20°C for 48h. The crystalline xylitol of a regular tetrahedral shape with purity 95% and crystallization yield 60.2% was obtained from the clarified xylitol fermentation broth. An intact, economical and environmental-friendly route of purification and crystallization of xylitol from fermentation of corncob hydrolysates was obtained, and its experimental procedure and data provided a sound basis for large-scale industrial production.
出版日期: 2010-03-05
引用本文:
. Purification and crystallization of xylitol from
fermentation broth of corncob hydrolysates[J]. Front. Chem. Sci. Eng., 2010, 4(1): 57-64.
Jinchao WEI, Qipeng YUAN, Tianxin WANG, Le WANG, . Purification and crystallization of xylitol from
fermentation broth of corncob hydrolysates. Front. Chem. Sci. Eng., 2010, 4(1): 57-64.
Ylikahri R. Metabolic and nutritional aspects of xylitol. Adv Food Res, 1979, 25: 159–180
Mäkinen K K, Chiego D J, Allen P, Bennet C, Isotupa K P, Tiesko J, Makinen P L. Physical, chemical and histological changes in dentin caries lesionof primary teeth induced by regular use of polyol chewing-gums. Acta Odontol Scand, 1998, 56: 148–156 doi: 10.1080/000163598422884
Miyasawa H I Y, Mayanagi H, Takahashi N. Xylitol inhibition of anaerobic acid production by streptococcusmutans at various pH levels. Oral MicrobiolImmunol, 2003, 18: 215–219 doi: 10.1034/j.1399-302X.2003.00068.x
Mäkinen K K, Söderling E. A quantitative study of mannitol,sorbitol, xylitol, and xylose in wild berries and commercial fruits. J Food Sci, 1980, 45: 367–371 doi: 10.1111/j.1365-2621.1980.tb02616.x
Jeffries T W, Kurtzman C P. Taxonomy of xylose-fermentingyeasts. Enzyme Microb Technol, 1994, 6: 922–932 doi: 10.1016/0141-0229(94)90001-9
Vandeska E, Kuzmanova S, Jeffries T W. Xylitol formation and key enzyme activities in Candida boidinii under different oxygen transferrates. J Ferment Bioeng, 1995, 80: 513–516 doi: 10.1016/0922-338X(96)80929-9
Rivas B, Domínguez J M, Domínguez H, Parajó J C. Bioconversion of post-hydrolyzed autohydrolysisliquors: an alternative for xylitol production from corncobs. Enzyme Microb Technol, 2002, 31: 431–438 doi: 10.1016/S0141-0229(02)00098-4
Liaw W C, Chen C S, Wen S C, Kuan P C. Xylitolproduction from rice straw hemicellulose hydrolyzate by polyacrylichydrogel thin films with immobilized Candidasubtropicalis WF79. J BiosciBioeng, 2008, 105: 97–105 doi: 10.1263/jbb.105.97
Eleonora W, Slobodanka K. Microbial conversion of D-xyloseto xylitol. J Ferment Bioeng, 1998, 86: 1–14 doi: 10.1016/S0922-338X(98)80026-3
Faveri D, Torre P, Perego P, Converti A. Xylitol recovery by crystallization from synthetic solutions andfermented hemicellulose hydrolysates. ChemEng J, 2002, 90: 291–298 doi: 10.1016/S1385-8947(02)00134-1
Faveri D, Torre P, Perego P, Converti A. Optimization of xylitol recovery by crystallization from syntheticsolutions using response surface methodology. J Food Eng, 2004, 61: 407–412 doi: 10.1016/S0260-8774(03)00148-1
Gurgel P V, Mancilha I M, Peçanha R P, Siqueira J F M. Xylitol recovery from fermented sugarcane bagasse hydrolyzate. Biores Technol, 1995, 52: 219–223 doi: 10.1016/0960-8524(95)00025-A
Martínez E A, Silva A J B, Giulietti M, Solenzal A I N. Downstream process for xylitol produced from fermented hydrolysate. Enzyme Microb Technol, 2007, 40: 1185–1189
Parajo J C, Dominguez H, Dominguez J M. Improved xylitol production with Debahansenii Y-7426 from raw or detoxified wood hydrolysates. Enryme Microb Technol, 1997, 21: 18–24 doi: 10.1016/S0141-0229(96)00210-4
Chen L F, Gong C S. Fermentation broth of sugarcanebagasse hemicellulose hydrolysate to xylitol by a hydrolysate-acclimatizedyeast. J Food Sci, 1985, 50: 227 doi: 10.1111/j.1365-2621.1985.tb13315.x
Jandera P, Churacek J. Ion-exchange chromatographyof aldehydes, ketones, ethers, alcohols, polyols and saccharides. J Chromatogr, 1974, 98: 55–104 doi: 10.1016/S0021-9673(00)84781-0
Vyglazov V V, Kholǐkin Y I. Solubility in the systemxylitol-ethanol-water and certain properties of saturated solutions. Zurnal Prikladnoi Khimii, 1984, 57: 1651–1654
Martínez E A, Giulietti M, Almeida S J B, Solenzal A I N, Derenzo S. Estudio de lacinéticade cristalización del xilitol. Efectode la velocidad de enfriamiento Ing Quím, 2005, 37: 88–96
Giulietti M, Seckler M M, Derenzo S, Ré M I, Cekinski E. Industrial crystallizationand precipitation from solutions: state of the technique. Braz J Chem Eng, 2001, 18: 423–440 doi: 10.1590/S0104-66322001000400007
Mussato S I, Roberto I C. Hydrolysate detoxificationwith activated charcoal for xylitol production by Candida guilliermondii. BiotechnolLett, 2001, 23: 1681–1684 doi: 10.1023/A:1012492028646
Lee W G, Lee J S, Shin C S, Park S C, Chang H N, Chang Y K. Ethanol production using concentration oak wood hydrolysates andmethods to detoxify. Appl Biochem Biotechnol, 1999, 77: 547–559 doi: 10.1385/ABAB:78:1-3:547