Structure controlling and process scale-up in
the fabrication of nanomaterials
Structure controlling and process scale-up in
the fabrication of nanomaterials
Chunzhong LI,
Key Laboratory for Ultrafine
Materials of Ministry of Education, School of Materials Science and
Engineering, East China University of Science & Technology, Shanghai
200237, China;
Abstract:Nanotechnology is already having a significant commercial impact, and will very certainly have a much greater impact in the future. The research on process engineering and scale-up will be very important for the commercial production and application of nanomaterials, because the properties and structure of nanomaterials are not only determined by the nucleation and growth process, but also strongly affected by the engineering properties, such as the mixing, the heat and mass transfer, and also the distribution of temperature, concentration, etc. This paper will present some research work in our laboratory on the fabrication of nanomaterials. Based on the chemical engineering principle and methods, many kinds of novel nanomaterials can be synthesized and their structure can be easily controlled through adjusting the parameters of the fluid mixing, and the distribution of temperature, residence time and concentration, etc. By using the micro-mixing, heat and mass transfer and reaction control methods, the host-guest nanocomposites have been assembled and assumed as the novel electroanalytical sensing nanobiocomposite materials. Based on the principles of chemical engineering, the manufacturing technologies for magnetic powders, calcium carbonate, and titanium dioxide have been developed for commercial-scale production, and the largest production scale has reached 15 kt/year.
出版日期: 2010-03-05
引用本文:
. Structure controlling and process scale-up in
the fabrication of nanomaterials[J]. Front. Chem. Sci. Eng., 2010, 4(1): 18-25.
Chunzhong LI, . Structure controlling and process scale-up in
the fabrication of nanomaterials. Front. Chem. Sci. Eng., 2010, 4(1): 18-25.
Charpentier J C. The triplet “molecular processes-product-process” engineering:the future of chemical engineering? ChemEng Sci, 2002, 57: 4667–4690 doi: 10.1016/S0009-2509(02)00287-7
Shi L Y, Li C Z, Chen A P, Zhu Y H, Fang D Y. Morphological structure of nanometerTiO2-Al2O3 composite powders synthesized in high temperature gasphase reactor. Chem Eng J, 2001, 84: 405–411 doi: 10.1016/S1385-8947(00)00282-5
Shi L Y, Li C Z, Chen A P, Zhu Y H, Fang D Y. Morphology and structure of nanosizedTiO2 particles synthesized by gas-phase reaction. Mater Chem Phys, 2000, 66: 51–57 doi: 10.1016/S0254-0584(00)00277-7
Li C Z, Han J Y, Zhang Z T, Gu H C. Preparationof TiO2 coated Al2O3 particles by chemical vapor deposition in the rotaryreactor. J Am Ceram Soc, 1999, 82: 2044–2048
Li C Z, Hu L M, Yuan W K, Chen M H. Study onthe mechanism of aluminum nitride synthesis by chemical vapor deposition. Mater Chem Phys, 1997, 47: 273–278 doi: 10.1016/S0254-0584(97)80064-8
Liu B H, Gu H C, Cheng Q L. Preparation of nanosized Mo powder by microwave plasmachemical vapor deposition method. MaterChem Phys, 1999, 59: 204–209 doi: 10.1016/S0254-0584(99)00007-3
Zhu Y H, Zhu H J, Han J Y, Hu L M. Electricproperties of Ag/Si3N4 nanostructured composites, J Inorg Mater, 1996, 11: 348–352
Zhao B, Liu Z, Zhang Z. Improvement of oxidation resistance of ultrafine copperpowders by phosphating treatment. J SolidState Chem, 1997, 130: 157–160 doi: 10.1006/jssc.1997.7276
Zhao Y, Li C Z, Liu X H, Gu F, Jiang H B. Synthesis and optical properties of TiO2 nanoparticles by gas flame combustion. Mater Lett, 2007, 61: 79–83 doi: 10.1016/j.matlet.2006.04.010
Zhao Y, Li C Z, Liu X H, Gu F. Highly enhanceddegradation of dye with well-dispersed TiO2 nanoparticles under visible irradiation. J Alloy Compd, 2007, 440: 281–286 doi: 10.1016/j.jallcom.2006.09.038
Zhao Y, Li C Z, Liu X H, Gu F, Du H L. Surface characteristics and microstructureof dispersed TiO2 nanoparticles prepared bydiffusion flame combustion. Mater ChemPhys, 2008, 107: 344–349 doi: 10.1016/j.matchemphys.2007.07.026
Zhao Y, Li C Z, Gu F. Zn-doped TiO2 Nanoparticles withhigh photocatalysis activity synthesised by hydrogen-oxygen diffusionflames. Appl Catal B, 2008, 79: 208–215 doi: 10.1016/j.apcatb.2007.09.044
Zhou Q L, Li C Z, Gu F. Self-organized NiO architectures: synthesis and catalyticproperties for growth of carbon nanotubes. J Alloy Compd, 2009, 474: 358–363 doi: 10.1016/j.jallcom.2008.06.084
Zhou Q L, Li C Z, Gu F, Du H L. Flame synthesisof carbon nanotubes with high density on stainless steel mesh. J Alloy Compd, 2008, 463: 317–322 doi: 10.1016/j.jallcom.2007.09.021
Wang L J, Li C Z, Gu F, Zhang C X. Facile flamesynthesis and electrochemical properties of carbon nanocoils. J Alloy Compd, 2009, 473: 351–355 doi: 10.1016/j.jallcom.2008.05.095
Liu J, Hu Y J, Gu F, Li C Z. Flame synthesisof ball-in-shell-structured TiO2 nanospheres. Ind Eng Chem Res, 2009, 48: 735–739 doi: 10.1021/ie800986j
Hu Y J, Li C Z, Gu F, Ma J. Preparationand formation mechanism of alumina hollow nanostructures via highspeed jet flame combustion. Ind Eng ChemRes, 2007, 46: 8004–8008 doi: 10.1021/ie070451t
Hu Y J, Li C Z, Gu F, Zhao Y. Facile flamesynthesis and photoluminescent properties of core-shell TiO2-SiO2 nanoparticles. J Alloy Compd, 2007, 432: L5–L9 doi: 10.1016/j.jallcom.2006.05.134
Hu Y J, Li C Z, Gu F, Jiang H B, Zhao Y. Mechanism analysis and preparation ofcore-shell TiO2/SiO2 nanoparticles by H2/air flame combustions. J Inorg Mater, 2006, 22: 2253–2257
Gu F, Li C Z, Wang S F, Lu M K. Solution-phasesynthesis of spherical zinc sulfide nanostructures. Langmuir, 2006, 22: 1329–1332 doi: 10.1021/la052539m
Gu F, Li C Z, Wang S F. Solution-chemical synthesis of carbon nanotube/ZnS nanoparticlecore/shell heterostructures. Inorg Chem, 2007, 46: 5343–5348 doi: 10.1021/ic7004858
Wang S F, Feng Gu, Li C Z, Lu M K. Synthesisof mesoporous Eu2O3 spindles. Cryst Growth & Des, 2007, 7: 2670–2674 doi: 10.1021/cg070111a
Chen J T, Gu F, Li C Z. Influence of precalcination and boron-doping on the initialphotoluminescent properties of SrAl2O4:Eu,Dy phosphors. Cryst Growth& Des, 2008, 8: 3175–3179 doi: 10.1021/cg700719h
Jiang H, Hu J Q, Gu F, Li C Z. Large-scaled,uniform, monodispersed ZnO colloidal microspheres. J Phys Chem C, 2008, 112: 12138–12141 doi: 10.1021/jp8024232
Gu F, Wang S F, Cao H M, Li C Z. Synthesisand optical properties of SnO2 nanorods. Nanotechnology, 2008, 19: 095708 doi: 10.1088/0957-4484/19/9/095708
Hu J Q, Bando Y, Zhan J H, Li C Z, Golberg D. Mg3N2-Ga: nanoscale semiconductor-liquid metal heterojunctionsinside carbon nanotubes. Adv Mater, 2007, 19: 1342–1346 doi: 10.1002/adma.200602182
Zhu Y H, Cao H M, Tang L H, Yang X L, Li C Z. Immobilization of horseradish peroxidasein three-dimensional macroporous TiO2 matricesfor biosensor applications. ElectrochimActa, 2009, 54: 2823–2827 doi: 10.1016/j.electacta.2008.11.025
Li Y X, Zhu Y H, Li C Y, Yang X L, Li C Z. Synthesis of ZnS nanoparticles into thepore of mesoporous silica spheres. MaterLett, 2009, 63: 1068–1070 doi: 10.1016/j.matlet.2009.02.007
Wang P, Zhu Y H, Yang X L, Li C Z, Du H L. Synthesis of CdSe nanoparticles intothe pores of mesoporous silica microspheres. Acta Mater, 2008, 56: 1144–1150 doi: 10.1016/j.actamat.2007.11.006
Li Y X, Zhu Y H, Yang X L, Li C Z. Mesoporoussilica spheres as microreactors for performing CdS nanocrystal synthesis. Cryst Growth Des, 2008, 8: 4494–4498 doi: 10.1021/cg800457u
Cao H M, Zhu Y H, Tang L H, Yang X L, Li C Z. A glucose biosensor based on immobilizationof glucose oxidase into 3D macroporous TiO2. Electroanalysis, 2008, 20: 2223–2228 doi: 10.1002/elan.200804314
Guo F, Zhu Y H, Yang X L, Li C Z. Electrostaticlayer-by-layer self-assembly of PAMAM-CdS nanocomposites on MF microspheres. Mater Chem Phys, 2007, 105: 315–319 doi: 10.1016/j.matchemphys.2007.04.077
Wang P, Zhu Y H, Yang X L, Li C Z. Electrochemicalsynthesis of magnetic nanoparticles within mesoporous silica microspheres. Colloid Surf A, 2007,294 : 287–291 doi: 10.1016/j.colsurfa.2006.08.015
Cheng Q L, Pavlinek V, Lengalova A, Li C Z, He Y, Saha P. Conductingpolypyrrole confined in ordered mesoporous silica SBA-15 channels:preparation and its electrorheology. MicroporMesopor Mater, 2006, 93: 263–269 doi: 10.1016/j.micromeso.2006.03.005
Cheng Q L, Pavlinek V, Lengalova A, Li C Z, He Y, Saha P. Electrorheologicalproperties of new mesoporous material with conducting polypyrrolein mesoporous silica. Micropor MesoporMater, 2006, 94: 193–199 doi: 10.1016/j.micromeso.2006.03.039
Cheng Q L, Pavlinek V, Li C Z, Lengalova A, He Y, Saha P. Synthesis and characterization of new mesoporous materialswith conducting polypyrrole confined in mesoporous silica. Mater Chem Phys, 2006, 98: 504–508 doi: 10.1016/j.matchemphys.2005.09.074
Cheng Q L, Pavlinek V, He Y, Lengalova A, Li C Z, Saha P. Surfactant-assisted polypyrrole/titanate composite nanofibers:morphology, structure and electrical properties. Synthetic Met, 2008, 158: 953–957 doi: 10.1016/j.synthmet.2008.06.022
Xu L H, Zhu Y H, Yang X L, Li C Z. Amperometricbiosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulatedPt nanoparticles for glucose detection. Mater Sci Eng: C, 2009, 29: 1306–1310 doi: 10.1016/j.msec.2008.10.031
Tang L H, Zhu Y H, Yang X L, Sun J J, Li C Z. Self-assembled CNTs/SgSe/dehydrogenasehybrid-based amperometric biosensor triggered by photovoltaic effects. Biosens Bioelectron, 2008, 24: 319–323 doi: 10.1016/j.bios.2008.03.043
Tang L H, Zhu Y H, Yang X L, Li C Z. An enhancedbiosensor for glutamate based on self-assembled carbon nanotubes anddendrimer-encapsulated platinum nanobiocomposites-doped polypyrrolefilm. Anal Chim Acta, 2007, 597: 145–150 doi: 10.1016/j.aca.2007.06.024
Tang L H, Zhu Y H, Xu L H, Yang X L, Li C Z. Amperometric glutamate biosensor basedon self-assembling glutamate dehydrogenase and dendrimer-encapsulatedplatinum nanoparticles onto carbon nanotubes. Talanta, 2007, 73: 438–443 doi: 10.1016/j.talanta.2007.04.008
Xu L H, Zhu Y H, Tang L H, Yang X L, Li C Z. Biosensor based on self-assembling glucoseoxidase and dendrimer-encapsulated pt nanoparticles on carbon nanotubesfor glucose detection. Electroanalysis, 2007, 19: 717–722 doi: 10.1002/elan.200603805
Tang L H, Zhu Y H, Xu L H, Yang X L, Li C Z. Properties of dendrimer-encapsulatedPt nanoparticles doped polypyrrole composite films and their electrocatalyticactivity for glucose oxidation. Electroanalysis, 2007, 19: 1677–1682 doi: 10.1002/elan.200703904
Zhu Y H, Zhu H Y, Yang X L, Xu L H, Li C Z. Sensitive biosensors based on (dendrimerencapsulated pt nanoparticles)/enzyme multilayers. Electroanalysis, 2007, 19: 698–703 doi: 10.1002/elan.200603802
Zhu H Y, Zhu Y H, Yang X L, Li C Z. Multiwalledcarbon nanotubes incorporated with dendrimer encapsulated with Ptnanoparticles: an attractive material for sensitive biosensors. Chem Lett, 2006, 35: 326–327 doi: 10.1246/cl.2006.326
Li C Z, Cai S Y, Fang T N. Rheological behavior of aciculate ultrafine α-FeOOHparticle preparation system under alkaline conditions. J Solid State Chem, 1998, 141: 94–98 doi: 10.1006/jssc.1998.7922
Chen F Y, Gu Y F, Wang S, Hu L M. Thixotropy-antithixotropybehavior of concentrated surface modified ultrafine calcium carbonatesuspension. Chem Res Chinese Univ, 1998, 19: 99–102 (in Chinese)
Chen F Y, Xu Y, Wang S, Gu Y F, Hu L M. Rhelogical properties of surface modifiedultrafine calcium carbonate suspensions. J East China Univ Sci Techn (China), 1994, 20: 750–752 (in Chinese)
Li C Z, Hua B. Preparation of nanocrystallineSnO2 thin film coated Al2O3 ultrafine particles by fluidized chemicalvapor deposition. Thin Solid Film, 1997, 310: 238–243 doi: 10.1016/S0040-6090(97)00400-8
Hua B, Li C Z. Production and characterizationof nanocrystalline SnO2 films on Al2O3 agglomerates by CVD in a fluidizedbed. Mater Chem Phys, 1999, 59: 130–135 doi: 10.1016/S0254-0584(99)00027-9