Anti-hyperglycemic effect of the polysaccharide fraction isolated from mactra veneriformis
Anti-hyperglycemic effect of the polysaccharide fraction isolated from mactra veneriformis
Lingchong WANG1,2, Hao WU1,2(), Nian CHANG1, Kun ZHANG1
1. College of Pharmaceutical Science, Nanjing University of Chinese Medicine, Nanjing 210046, China; 2. Research Center of Marine Drug in Jiangsu Province, Nanjing 210046, China
Total macromolecule extract was obtained from the soft body of Mactra veneriformis by the coupling techniques of decoction and alcohol precipitation. The extract was deproteinized with an ion exchange column, and resulted in the purifying of the crude polysaccharide fraction. It was found by chemical analysis that the crude polysaccharide part is composed of abundant polysaccharides (>95%) and few proteins (<1%). Furthermore, only one type of monosaccharide, glucose, was detected from its hydrolytes by thin-layer chromatography, indicating that the polysaccharides might be analogs of glucosan. The anti-hyperglycemia effects of the crude polysaccharide part were preliminarily investigated using several pharmacological methods in normal and diabetic mice. Animal experimental results showed that the crude polysaccharide fraction exhibited proper glycemia inhibition activity, and 300 mg/kg-weight dose has the optimal effect among all the studied doses. It is concluded that the crude polysaccharide fraction can be explored as a novel health product that possesses potential as an anti-hyperglycemic agent.
. Anti-hyperglycemic effect of the polysaccharide fraction isolated from mactra veneriformis[J]. Frontiers of Chemical Science and Engineering, 2011, 5(2): 238-244.
Lingchong WANG, Hao WU, Nian CHANG, Kun ZHANG. Anti-hyperglycemic effect of the polysaccharide fraction isolated from mactra veneriformis. Front Chem Sci Eng, 2011, 5(2): 238-244.
plasma glucose level (mmol·L-1) at time (min) after administration
60 min
180 min
blank control
saline, 15 mL/kg
23.36±3.19
21.59±1.72
positive control
metformin, 150 mg/kg
16.88±2.57a)
10.21±4.50 a)
CPPM-L
CPPM, 150 mg/kg
22.93±5.93
15.32±3.18 b)
CPPM-M
CPPM, 300 mg/kg
23.17±3.66
12.15±2.35 a)
CPPM-H
CPPM, 450 mg/kg
20.25±6.11
17.53±4.87b)
Tab.2
Fig.4
Fig.5
1
Harris M I, Hadden W C, Knowler W C, Bennett P H. Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in US population aged 20-74 yrDiabetes , 1987, 36(4): 523–534 doi: 10.2337/diabetes.36.4.523
2
Stern M P. Diabetes and cardiovascular disease. The “common soil” hypothesis. Diabetes , 1995, 44(4): 369–374 doi: 10.2337/diabetes.44.4.369
3
Pan X R, Yang W Y, Li G W, Liu J, Prevalence of diabetes and its risk factors in China, 1994. Diabetes Care , 1997, 20(11): 1664–1669 doi: 10.2337/diacare.20.11.1664
4
Blunt J W, Copp B R, Hu W P, Munro M H G, Northcote P T, Prinsep M R. Marine natural products. Natural Product Reports , 2009, 26(2): 170–244 doi: 10.1039/b805113p
5
Chang N, Wu H, Wang L, Yao J, Jing Y. Hypoglycemic effect of Mactra Veneriformis extraction. Journal of Nanjing TCM University , 2009, 25(4): 277–280 (in Chinese)
6
Adlam C, Knights J M, Mugridge A, Lindon J C, Baker P R, Beesley J E, Spacey B, Craig G R, Nagy L K. Purification, characterization and immunological properties of the serotype-specific capsular polysaccharide of Pasteurella haemolytica (serotype A1) organisms. J Gen Microbiol , 1984, 130(9): 2415–2426
7
Walker J M. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol Biol , 1994, 32: 5–8
8
Houff W H, Christie D R, Beaumont R H. Analysis of aromatic sulfonation reaction mixtures. Analytical Chemistry , 1957, 29(12): 1866–1868 doi: 10.1021/ac60132a008
9
Slodki M E, Wickerham L J. Extracellular polysaccharides and classification of the genus Lipomyces. J Gen Microbiol , 1966, 42(3): 381–385
10
Chen G C, Johnson B R. Improved colorimetric determination of cell wall chitin in wood decay fungi. Appl Environ Microbiol , 1983, 46(1): 13–16
11
Ajabnoor M A. Effect of aloes on blood glucose levels in normal and alloxan diabetic mice. Journal of Ethnopharmacology , 1990, 28(2): 215–220 doi: 10.1016/0378-8741(90)90031-N
12
Senso A, Franco P, Oliveros L, Minguillón C A. Characterization of doubly substituted polysaccharide derivatives. Carbohydrate Research , 2000, 329(2): 367–376 doi: 10.1016/S0008-6215(00)00182-8
13
Turgeona S L, Schmittb C, Sanchezc C. Protein-polysaccharide complexes and coacervates. Curr Opin Colloid In , 2007, 12(4-5): 166–178 doi: 10.1016/j.cocis.2007.07.007
14
Melo M R S, Feitosa J P A, Freitasa A L P, de Paula R C M. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydrate Polymers , 2002, 49(4): 491–498 doi: 10.1016/S0144-8617(02)00006-1
15
Bankir L, Bardoux P, Ahloulay M. Vasopressin and diabetes mellitus. Nephron , 2001, 87(1): 8–18 doi: 10.1159/000045879
16
McDonald G W, Fisher G F, Burnham C. Reproducibility of the oral glucose tolerance test. Diabetes , 1965, 14: 473–480