Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Engineering in China  2010, Vol. 4 Issue (4): 411-416   https://doi.org/10.1007/s11705-010-0514-9
  RESEARCH ARTICLE 本期目录
Numerical study on laminar flame speed of natural gas-carbon monoxide-air mixtures
Numerical study on laminar flame speed of natural gas-carbon monoxide-air mixtures
Chen DONG, Qulan ZHOU(), Qinxin ZHAO, Tongmo XU, Shi’en HUI
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 全文: PDF(487 KB)   HTML
Abstract

Laminar flame speeds of natural gas-carbon monoxide-air mixtures are calculated by CHEMKIN II with GRI Mech-3.0 over a large range of fuel compositions, equivalence ratios, and initial temperatures. The calculated results of natural gas are compared with previous experimental results that show a good agreement. The calculated laminar flame speeds of natural gas-carbon monoxide-air mixtures show a nonmonotonic increasing trend with volumetric fraction of carbon monoxide and an increasing trend with the increase of initial temperature of mixtures. The maximum laminar flame speed of certain fuel blend reaches its biggest value when there is 92% volumetric fraction of carbon monoxide in fuel at different initial temperatures. Five stoichiometric natural gas-carbon monoxide-air mixtures are selected to study the detailed chemical structure of natural gas-carbon monoxide-air mixtures. The results show that at stoichiometric condition, the fuel blend with 80% volumetric fraction of carbon monoxide has the biggest laminar flame speed, and the C normalized total production rate of methane with 80% volumetric fraction of carbon monoxide is the largest of the five stoichiometric mixtures.

Key wordslaminar flame speed    numerical study    nonmonotonic increasing trend
收稿日期: 2010-01-28      出版日期: 2010-12-05
Corresponding Author(s): ZHOU Qulan,Email:qlzhou@mail.xjtu.edu.cn   
 引用本文:   
. Numerical study on laminar flame speed of natural gas-carbon monoxide-air mixtures[J]. Frontiers of Chemical Engineering in China, 2010, 4(4): 411-416.
Chen DONG, Qulan ZHOU, Qinxin ZHAO, Tongmo XU, Shi’en HUI. Numerical study on laminar flame speed of natural gas-carbon monoxide-air mixtures. Front Chem Eng Chin, 2010, 4(4): 411-416.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-010-0514-9
https://academic.hep.com.cn/fcse/CN/Y2010/V4/I4/411
Fig.1  
Fig.2  
Fig.3  
Fig.4  
flame No.CO volumetric fractionCOCH4C2H6C3H8CO2O2N2calculated laminar flame speed /(cm·s-1)
10.980.2790.005454.6E - 055.6E - 060.00020.15030.565534.14
20.800.1680.040270.000344.3E - 050.00130.16590.624253.93
30.500.0730.070140.000597.5E - 050.00220.17930.674646.05
40.200.0220.086120.000739.2E - 050.00270.18640.701539.57
5000.09320.000799.9E - 050.00290.18960.713436.63
Tab.1  
Fig.5  
Fig.6  
1 Sun S, Jin H G, Gao L, Han W. Study on a multifunctional energy system producing coking heat, methanol and electricity. Fuel , 2010, 89(7): 1353-1360
doi: 10.1016/j.fuel.2009.05.012
2 Scholte T G, Vaags P B. Burning velocities of mixtures of hydrogen, carbon monoxide and methane with air. Combustion and Flame , 1959, 3: 511-524
doi: 10.1016/0010-2180(59)90057-4
3 Vagelopoulos C M, Egolfopoulos F N. Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air. Proceedings of the Combustion Institute , 1994, 25: 1317-1323
4 Wu C Y, Chao Y C, Cheng T S, Chen C P, Ho C T. Effects of CO addition on the characteristics of laminar premixed CH4/air opposed jet flames. Combustion and Flame , 2009, 156(2): 362-373
doi: 10.1016/j.combustflame.2008.10.028
5 Natarajan J, Lieuwen T J, Seitzman J. Seitzman. Laminar flame speeds of H2/CO mixtures: effect of CO2 dilution, preheat temperature, and pressure. Combustion and Flame , 2007, 151(1-2): 104-119
doi: 10.1016/j.combustflame.2007.05.003
6 Ouimette P, Seers P. Numerical comparison of premixed laminar flame velocity of methane and wood syngas. Fuel , 2009, 88(3): 528-533
doi: 10.1016/j.fuel.2008.10.008
7 Dong C, Zhou Q, Zhao Q, Zhang Y Q, Xu T M, Hui S E. Experimental study on laminar flame speed of hydrogen/carbon monoxide/air mixtures. Fuel , 2009, 88(10): 1858-1863
doi: 10.1016/j.fuel.2009.04.024
8 Wang J H, Huang Z H, Tang C L, Miao H Y, Wang X B. Numerical study of the effect of hydrogen addition on methane-air mixtures combustion. International Journal of Hydrogen Energy , 2009, 34(2): 1084-1096
doi: 10.1016/j.ijhydene.2008.11.010
9 Huang Z H, Zhang Y, Zeng K, Liu B, Wang Q, Jiang D M. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures. Combustion and Flame , 2006, 146(1-2): 302-311
doi: 10.1016/j.combustflame.2006.03.003
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed