Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2011, Vol. 5 Issue (2): 252-257   https://doi.org/10.1007/s11705-010-1010-y
  RESEARCH ARTICLE 本期目录
Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor
Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor
Hongman ZHANG1(), Qiang JIN2, Rui XU2, Lishi YAN2, Zengxiang LIN2
1. College of Science, Nanjing University of Technology, Nanjing 210009, China; 2. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
 全文: PDF(172 KB)   HTML
Abstract

Xylan of corn stover was pretreated with 1%, 2% and 3% (w/w) sulfuric acid at relatively low temperatures (90°C, 95°C and 100°C) in a dilute acid cycle spray flow-through reactor (DCF). The hydrolysis of xylan to its monomeric xylose was modeled by a series of first-order reactions. Both biphasic and Saeman hydrolysis models were applied to fit the experimental data. The results confirmed that the kinetic data of xylan hydrolysis fitted a first-order irreversible reaction model and the experimental data. The reaction rates of xylose monomer formation and degradation were sensitive to catalyst concentration and temperature. Higher catalyst concentration and lower reaction temperature result in high xylose yield. The activation energy for xylose formation and degradation were determined to be 112.9 and 101.0 kJ·mol-1, respectively. Over 90% theoretical xylose obtained from corn stover can be used to produce ethanol, xylitol and fumaric acid by fermentation.

Key wordscorn stover    xylan hydrolysis    biphasic model    Saeman model    cycle spray    kinetics
收稿日期: 2010-04-06      出版日期: 2011-06-05
Corresponding Author(s): ZHANG Hongman,Email:hmzhang9607@sina.com   
 引用本文:   
. Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor[J]. Frontiers of Chemical Science and Engineering, 2011, 5(2): 252-257.
Hongman ZHANG, Qiang JIN, Rui XU, Lishi YAN, Zengxiang LIN. Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor. Front Chem Sci Eng, 2011, 5(2): 252-257.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-010-1010-y
https://academic.hep.com.cn/fcse/CN/Y2011/V5/I2/252
Fig.1  
Fig.2  
Fig.3  
Fig.4  
C/%biphasic modelSaeman model
k1f × 102k1s × 102k2 × 104R2k1/k2k1 × 102k2 × 104R2k1/k2
11.51.47.80.9918.81.57.90.9919.0
22.62.411.10.9722.82.59.20.9827.2
33.12.912.10.9825.03.112.10.9825.6
Tab.1  
1 Yang B, Wyman C E. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels. Bioprod and Bioref , 2008, 2(1): 26-40
doi: 10.1002/bbb.49
2 Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology , 2002, 83(1): 1-11
doi: 10.1016/S0960-8524(01)00212-7
3 Mamman A S, Lee J M, Kim Y C, Hwang I T, Park N J, Hwang Y K, Chang J S, Hwang J S. Furfural: hemicellulose/xylose derived biochemical. Biofuels. Bioprod and Bioref , 2008, 2(5): 438-454
doi: 10.1002/bbb.95
4 Kumar P, Barrett D M, Delwiche M J, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research , 2009, 48(8): 3713-3729
doi: 10.1021/ie801542g
5 Torget R W, Kim J S, Lee Y Y. Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Industrial & Engineering Chemistry Research , 2000, 39(8): 2817-2825
doi: 10.1021/ie990915q
6 Yan L, Zhang H, Chen J, Lin Z, Jin Q, Jia H, Huang H. Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery. Bioresource Technology , 2009, 100(5): 1803-1808
doi: 10.1016/j.biortech.2008.10.001
7 Lavarack B P, Griffin G J, Rodman D. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass and Bioenergy , 2002, 23(5): 367-380
doi: 10.1016/S0961-9534(02)00066-1
8 Liu C, Wyman C E. The effect of flow rate of very dilute sulfuric acid on xylan, lignin, and total mass removal from corn stover. Industrial & Engineering Chemistry Research , 2004, 43(11): 2781-2788
doi: 10.1021/ie030754x
9 Zhu Y, Lee Y Y, Elander R T. Dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Applied Biochemistry and Biotechnology , 2004, 117(2): 103-114
doi: 10.1385/ABAB:117:2:103
10 Lee Y Y, Iyer P, Torget R W. Dilute-acid hydrolysis of lignocellulosic biomass. Advances in Biochemical Engineering/Biotechnology , 1999, 65: 93-115
doi: 10.1007/3-540-49194-5_5
11 Jacobsen S E, Wyman C E. Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Applied Biochemistry and Biotechnology , 2000, 84-86(1-9): 81-96
12 Esteghlalian A, Hashimoto A G, Fenske J J, Penner M H. Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresource Technology , 1997, 59(2-3): 129-136
doi: 10.1016/S0960-8524(97)81606-9
13 Springer E L, Harris J F. Procedures for determining the neutralizing capacity of wood during hydrolysis with mineral acid solutions. Industrial & Engineering Chemistry Product Research and Development , 1985, 24(3): 485-489
doi: 10.1021/i300019a030
14 Lloyd T A, Wyman C E. Predicted effects of mineral neutralization and bisulfate formation on hydrogen ion concentration for dilute sulfuric acid pretreatment. Applied Biochemistry and Biotechnology , 2004, 115: 1013-1022
doi: 10.1385/ABAB:115:1-3:1013
15 Yat S C, Berger A, Shonnard D R. Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass. Bioresource Technology , 2008, 99(9): 3855-3863
doi: 10.1016/j.biortech.2007.06.046
16 Lu Y, Mosier N S. Kinetic modeling analysis of maleic acid-catalyzed hemicellulose hydrolysis in corn stover. Biotechnology and Bioengineering , 2008, 101(6): 1170-1181
doi: 10.1002/bit.22008
17 Kálmán G, Varga E, Réczey K. Dilute sulphuric acid pretreatment of corn stover at long residence times. Chemical and Biochemical Engineering Quarterly , 2002, 16(4): 151-157
18 Lu X B, Zhang Y M, Liang Y, Yang J, Dan H B. Modeling and optimization of the dilute sulfuric acid treatment on corn stover at low temperature. Chemical and Biochemical Engineering Quarterly , 2008, 22(2): 137-142
19 Yuan C M, Yan Y J, Ren Z W, Li T C, Cao J Q. Kinetics of sawdust hydrolysis with dilute hydrochloric acid and ferrous chloride. Chinese Journal of Process Engineering , 2004, 4: 64-68
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed