Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  0, Vol. Issue (): 514-520   https://doi.org/10.1007/s11705-011-1114-z
  REVIEW ARTICLE 本期目录
Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts
Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts
Jinli ZHANG1(), Nan LIU1, Wei LI1, Bin DAI2
1. School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China; 2. School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang 832000, China
 全文: PDF(121 KB)   HTML
Abstract

Polyvinyl chloride (PVC) has become the third most used plastic after polyethylene and polypropylene and the worldwide demand continues to increase. Polyvinyl chloride is produced by polymerization of the vinyl chloride monomer (VCM), which is manufactured industrially via the dehydrochlorination of dichloroethane or the hydrochlorination of acetylene. Currently PVC production through the acetylene hydrochlorination method accounts for about 70% of the total PVC production capacity in China. However, the industrial production of VCM utilizes a mercuric chloride catalyst to promote the reaction of acetylene and hydrogen chloride. During the hydrochlorination, the highly toxic mercuric chloride tends to sublime, resulting in the deactivation of the catalyst and also in severe environmental pollution problems. Hence, for China, it is necessary to explore environmental friendly non-mercury catalysts for acetylene hydrochlorination as well as high efficiency novel reactors, with the aim of sustainable PVC production via the acetylene-based method. This paper presents a review of non-mercury heterogeneous and homogeneous catalysts as well as reactor designs, and recommends future work for developing cleaner processes to produce VCM over non-mercury catalysts with high activity and long stability.

Key wordspolyvinyl chloride    vinyl chloride monomer    acetylene hydrochlorination    non-mercury catalysts    green chemical process
收稿日期: 2011-04-22      出版日期: 2011-12-05
Corresponding Author(s): ZHANG Jinli,Email:zhangjinli@tju.edu.cn   
 引用本文:   
. Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts[J]. Frontiers of Chemical Science and Engineering, 0, (): 514-520.
Jinli ZHANG, Nan LIU, Wei LI, Bin DAI. Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts. Front Chem Sci Eng, 0, (): 514-520.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-011-1114-z
https://academic.hep.com.cn/fcse/CN/Y0/V/I/514
Fig.1  
MetalSaltMetal loading /(% by mass)Initial rateAverage decay rate /(% conv. h-1)
ZnZnCl23.015.92.2
CdCdCl20.565.1125.318.92.42.9
HgHgCl20.91.96.78.8164.8151.191.378.36.66.48.88.8
CuCuCl23.023.83.2
AgAgNO35.018.23.7
AuHAuCl41.01.9461.0348.36.010.8
PdPdCl20.64232.86.4
RhRhCl34.779.215.4
RuRuCl34.544.38.5
Tab.1  
1 Ebner Martin. Ceresana research releases new comprehensive PVC market study. Newswire Today , http://www.newswiretoday.com/news/42864/, 2008-11-18
2 Jiang W W, Huo Y P, Yang Q, Luo Q, Li J J, Luo Y, Sun Y G. Research progress in mercury-free catalysts for hydrochiorination of acetylene. Polyvinyl Chloride , 2009, 37: 1-4 (in Chinese)
3 Wei F, Luo G H, Wei X B, Li X G, Qian W Z, Jin Y. CN Patent, 101670293A, 2010-03-17
4 Bing J L, Huang Z M. Polyvinyl Chloride (PVC) Process Technology. Beijing: Chemical Industry Press, 2008, 59(in Chinese)
5 Mitchenko S A, Khomutov E V, Shubin A A, Shul’ga Y M. Catalytic hydrochlorination of acetylene by gaseous HCl on the surface of mechanically pre-activated K2PtCl6 salt. Journal of Molecular Catalysis A Chemical , 2004, 212(1-2): 345-352
6 Hutchings G J. Gold catalysis in chemical processing. Catalysis Today , 2002, 72(1-2): 11-17
7 Lai C W, Jiang W W, Luo Q, Yang Q, Li J J. Study of the catalytic hydrochlorination of acetylene with nonmercuric catalytic systems. Sichuan Chemical Industry , 2007, 10: 8-11 (in Chinese)
8 Hutchings G. Vapor phase hydrochlorination of acetylene: correlation of catalyticn activity of supported metal chloride catalysts. Journal of Catalysis , 1985, 96(1): 292-295
9 Nkosi B, Coville N J, Hutchings G J. Reactivation of a supported gold catalyst for acetylene hydrochlorination. Journal of the Chemical Society. Chemical Communications , 1988, (1): 71-72
10 Nkosi B, Coville N J, Hutchings G J. Vapour phase hydrochlorination of acetylene with group VIII and IB metal chloride catalysts. Applied Catalysis , 1988, 43(1): 33-39
11 Nkosi B, Conville N J, Hutchings G J. Hydrochlorination of actylene using gold catalysts: a study of catalyst deactivation. Journal of Catalysis , 1991, 128(2): 366-377
12 Hutchings G J, Haruta M. A golden age of catalysis: a perspective. Applied Catalysis, A , 2005, 291: 2-5
13 Nkosi B, Adams M D, Coville N J, Hutchings G J. Hydrochlorination of acetylene using carbon-supported gold catalysts: a study of catalyst reactivation. Journal of Catalysis , 1991, 128(2): 378-386
14 Conte M, Carley A F, Hutchings G J. Reactivation of a carbon-supported gold catalyst for the hydrochlorination of acetylene. Catalysis Letters , 2008, 124(3-4): 165-167
15 Conte M, Carley A F, Heirene C, Willock D J, Johnston P, Herzing A A, Kiely C J, Hutchings G J. Hydrochlorination of acetylene using a supported gold catalyst: a study of the reaction mechanism. Journal of Catalysis , 2007, 250(2): 231-239
16 Mitchenko S A, Ananikov V P, Beletskaya I P. Mechanoactivation of acetylene hydrochlorination in the presence of K2PtCl6. Zhurnal Organicheskoi Khimii, 1998, 34: 1859-1860
17 Mitchenko S A. Acetylene hydrochlorination by gaseous hydrogen chloride on the surface of mechanically activated K2PtCl6 salt. Kinetics and Catalysis , 1998, 39: 859-862
18 Mitchenko S A, Krasnyakova T V, Mitchenko R S, Korduban A N. Acetylene catalytic hydrochlorination over powder catalyst prepared by pre-milling of K2PtCl4 salt. Journal of Molecular Catalysis A: Chemical , 2007, 275(1-2): 101-108
19 Strebelle M, Devos A. USPatent, 5254777, 1993-10-19
20 Song Q L, Wang S J, Shen B X, Zhao J G. Palladium-based catalysts for the hydrochlorination of acetylene: reasons for deactivation and its regeneration. Petroleum Science and Technology , 2010, 28(18): 1825-1833
21 Wang S J, Shen B X, Song Q L. Kinetics of acetylene hydrochlorination over bimetallic Au-Cu/C catalyst. Catalysis Letters , 2010, 134(1-2): 102-109
22 Panova S A, Shestakov K G, Temkin N O. Supported liquid-phase rhodium catalyst for acetylene hydrochlorination. Journal of the Chemical Society, Chemical Communications , 1994, (8): 977-977
23 Okuda N, Ueha Y, Okura K, Hisagai Y. JP Patent, 5213610A, 1993-08-24
24 Deng G C, Wu B X, Li T S. The reaearch on solid-liqiud catalyst using for the preparation of vinyl chloride from acetylene method. Polyvinyl Chloride , 1994, 6: 5-9 (in Chinese)
25 Conte M, Carley A F, Attard G, Herzing A A, Kiely C J, Hutchings G J. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts. Journal of Catalysis , 2008, 257(1): 190-198
27 Jiang W W, Yang Q, Luo Q, Li J J. CN Patent, 101249451A , 2008-08-27(in Chinese)
28 Yu Z Y. CN Patent, 101716528A, 2010-06-02(in Chinese)
29 Smith D M, Walsh P M, Slager T L. Studies of silica-supported metal chloride catalysts for the vapor-phase hydrochlorination of acetylene. Journal of Catalysis , 1968, 11(2): 113-130
30 Conte M, Davies T, Carley A F, Herzing A A, Kiely C J, Hutchings G J. Selective formation of chloroethane by the hydrochlorination of ethene using zinc catalysts. Journal of Catalysis , 2007, 252(1): 23-29
31 Enache D I, Edwards J K, Landon P, Solsona-Espriu B, Carley A F, Herzing A A, Watanabe M, Kiely C J, Knight D W, Hutchings G J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2. Science , 2006, 311(5759): 362-365
32 Hayashi T, Tanaka K, Haruta M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. Journal of Catalysis , 1998, 178(2): 566-575
33 Okazaki K, Morikawa Y, Tanaka S, Tanaka K, Kohyama M. Electronic structures of Au on TiO2(110) by first-principles calculations. Physical Review B: Condensed Matter and Materials Physics , 2004, 69(23): 235404
doi: 10.1103/PhysRevB.69.235404
34 Cunningham D A H, Vogel W, Haruta M. Negative activation energies in CO oxidation over an icosahedral Au/Mg(OH)2 catalyst. Catalysis Letters , 1999, 63(1/2): 43-47
35 Bailie J E, Abdullah H A, Anderson J A, Rochester C H, Richardson N V, Hodge N, Zhang J G, Burrows A, Kiely C J, Hutchings G J. Hydrogenation of but-2-enal over supported Au/ZnO catalysts. Physical Chemistry Chemical Physics , 2001, 3(18): 4113-4121
36 Akita T, Tanaka K, Kohyama M, Haruta M. Analytical TEM study on structural changes of Au particles on cerium oxide using a heating holder. Catalysis Today , 2007, 122(3-4): 233-238
37 Kellera N, Pham-Huu C, Ledoux M J, Estournes C, Ehret G.Preparation and characterization of SiC microtubes. Applied Catalysis, A , 1999, 187(2): 255-268
38 Julius A N. US Patent, 1812542, 1931-06-30.
39 Granville A P. US Patent, 1934324, 1933-11-07
40 Armin J.US Patent, 3113158, 1963-12-03
41 Thelen G, Bartels H, Droste W.CN Patent, 1037501A, 1989-11-29
42 Hutchings G J. Reactions of alkynes using heterogeneous and homogeneous cationic gold catalysts. Topics in Catalysis , 2008, 48(1-4): 55-59
43 Hutchings G J. Catalysis by gold. Catalysis Today , 2005, 100(1-2): 55-61
44 Hutchings G J, Hall M S, Carley A F, Landon P, Solsona B E, Kiely C J, Herzing A, Makkee M, Moulijin J A, Overweg A, Fierro-Gonzalez J C, Guzman J, Gates B C. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. Journal of Catalysis , 2006, 242(1): 71-81
45 Wei F, Wei X B, Luo G H, Qian W Z, Jin Y.CN Patent, 101497046A, 2009-08-05
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed