Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2011, Vol. 5 Issue (4): 471-476   https://doi.org/10.1007/s11705-011-1130-z
  RESEARCH ARTICLE 本期目录
Magnetohydrodynamic slip flow and diffusion of a reactive solute past a permeable flat plate with suction/injection
Magnetohydrodynamic slip flow and diffusion of a reactive solute past a permeable flat plate with suction/injection
Krishnendu BHATTACHARYYA(), G. C. LAYEK
Department of Mathematics, The University of Burdwan, West Bengal, Burdwan-713104, India
 全文: PDF(183 KB)   HTML
Abstract

The magnetohydrodynamic (MHD) boundary layer slip flow and solute transfer over a porous plate in the presence of a chemical reaction are investigated. The governing equations were transformed into self-similar ordinary differential equations by adopting the similarity transformation technique. Then the numerical solutions are obtained by a shooting technique using the fourth order Runge-Kutta method. The study reveals that due to the increase in the boundary slip, the concentration decreases and the velocity increases. On the other hand, with an increase in the magnetic field and mass suction, both boundary layer thicknesses decreased. As the Schmidt number and the reaction rate parameter increases, the concentration decreases and the mass transfer increases.

Key wordsslip flow    MHD boundary layer    reactive solute diffusion    flat plate    suction/injection
收稿日期: 2011-02-22      出版日期: 2011-12-05
Corresponding Author(s): BHATTACHARYYA Krishnendu,Email:krish.math@yahoo.com; krishnendu.math@gmail.com   
 引用本文:   
. Magnetohydrodynamic slip flow and diffusion of a reactive solute past a permeable flat plate with suction/injection[J]. Frontiers of Chemical Science and Engineering, 2011, 5(4): 471-476.
Krishnendu BHATTACHARYYA, G. C. LAYEK. Magnetohydrodynamic slip flow and diffusion of a reactive solute past a permeable flat plate with suction/injection. Front Chem Sci Eng, 2011, 5(4): 471-476.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-011-1130-z
https://academic.hep.com.cn/fcse/CN/Y2011/V5/I4/471
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
1 Blasius H. Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z Math U Phys , 1908, 56: 1-37
2 Pohlhausen E. Der W?rmeaustausch zwischen festen K?rpern und Flüssigkeiten mit kleiner Reibung und kleiner W?rmeleitung. Zeitschrift für Angewandte Mathematik und Mechanik , 1921, 1(2): 115-121
3 Howarth L. On the solution of the laminar boundary layer equations.In: Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences , 1938, 164(919): 547-579
4 Abu-Sitta A M M. A note on a certain boundary-layer equation. Applied Mathematics and Computation , 1994, 64(1): 73-77
5 Wang L. A new algorithm for solving classical Blasius equation. Applied Mathematics and Computation , 2004, 157(1): 1-9
6 Cortell R. Numerical solutions of the classical Blasius flat-plate problem. Applied Mathematics and Computation , 2005, 170(1): 706-710
7 Bataller R C. Radiation effects in the Blasius flow. Applied Mathematics and Computation , 2008, 198(1): 333-338
8 Sparrow E M, Cess R D. The effect of a magnetic field on free convection heat transfer. International Journal of Heat and Mass Transfer , 1961, 3(4): 267-274
9 Gupta A S. Laminar free convection flow of an electrically conducting fluid from a vertical plate with uniform surface heat flux and variable wall temperature in the presence of a magnetic field. Zeitschrift für Angewandte Mathematik und Physik , 1962, 13(4): 324-333
10 Riley N. Magnetohydrodynamic free convection. Journal of Fluid Mechanics , 1964, 18(04): 577-586
11 Watanabe T, Pop I. Hall effects on magnetohydrodynamic boundary layer flow over a continuous moving flat plate. Acta Mechanica , 1995, 108(1-4): 35-47
12 Damseh R A, Duwairi H M, Al-Odat M. Similarity analysis of magnetic field and thermal radiation effects on forced convection flow. Turkish Journal of Engineering and Environmental Sciences, 2006, 30: 83-89
13 Lai F C, Kulacki F A. Non-Darcy mixed convection along a vertical wall in a saturated porous medium. Journal of Heat Transfer , 1991, 113(1): 252-255
14 Postelnicu A. Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Heat and Mass Transfer , 2007, 43(6): 595-602
15 Bhattacharyya K, Layek G C. Chemically reactive solute distribution in MHD boundary layer flow over a permeable stretching sheet with suction or blowing. Chemical Engineering Communications , 2010, 197(12): 1527-1540
16 Beavers G S, Joseph D D. Boundary conditions at a naturally permeable wall. Journal of Fluid Mechanics , 1967, 30(01): 197-207
17 Martin M, Boyd I. Momentum and heat transfer in laminar boundary layer with slip flow. Journal of Thermophysics and Heat Transfer , 2006, 20(4): 710-719
18 Aziz A. Hydrodynamic and thermal slip flow boundary layers over a flat plate with constant heat flux boundary condition. Communications in Nonlinear Science and Numerical Simulation , 2010, 15(3): 573-580
19 Andersson H I. Slip flow past a stretching surface. Acta Mechanica , 2002, 158(1-2): 121-125
20 Wang C Y. Flow due to a stretching boundary with partial slip—an exact solution of the Navier-Stokes equations. Chemical Engineering Science, 2002, 57(17): 3745-3747
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed