Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2012, Vol. 6 Issue (3): 253-258   https://doi.org/10.1007/s11705-012-0902-4
  RESEARCH ARTICLE 本期目录
Methanol to propylene: the effect of iridium and iron incorporation on the HZSM-5 catalyst
Methanol to propylene: the effect of iridium and iron incorporation on the HZSM-5 catalyst
Alireza MOHAMMADREZAEI1, Sadegh PAPARI2(), Mousa ASADI1, Abas NADERIFAR3, Reza GOLHOSSEINI3
1. National Petrochemical Company, Petrochemical Research & Technology Company (NPC-RT), Tehran 14358-84711, Iran; 2. Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-9465, Iran; 3. Department of Chemical Engineering, Amirkabir University of Technology, Tehran 15914, Iran
 全文: PDF(156 KB)   HTML
Abstract

The effect of iridium and iron impregnation of HZSM-5 zeolite on the methanol to propylene reaction (MTP) was investigated. The selectivities of propylene and other hydrocarbons, and the conversion of methanol were compared by performing MTP in a small pilot plant. The results indicate that HZSM-5 zeolite modified by iron and iridium increased propylene selectivity by 6.3% and 8%, respectively. The selectivity of propylene was higher for Ir/H-ZSM-5 than for Fe/H-ZSM-5, where Fe/H-ZSM-5 was more stable than Ir/H-ZSM-5. Analytic techniques, including X-ray diffraction, BET surface area, temperature-programmed desorption of ammonia, and inductively coupled plasma atomic emission spectroscopy, were used to characterize the modified zeolites as well as the parent zeolites.

Key wordsHZSM-5    promoter    iridium    iron    MTP
收稿日期: 2011-11-02      出版日期: 2012-09-05
Corresponding Author(s): PAPARI Sadegh,Email:papari@che.sharif.ir   
 引用本文:   
. Methanol to propylene: the effect of iridium and iron incorporation on the HZSM-5 catalyst[J]. Frontiers of Chemical Science and Engineering, 2012, 6(3): 253-258.
Alireza MOHAMMADREZAEI, Sadegh PAPARI, Mousa ASADI, Abas NADERIFAR, Reza GOLHOSSEINI. Methanol to propylene: the effect of iridium and iron incorporation on the HZSM-5 catalyst. Front Chem Sci Eng, 2012, 6(3): 253-258.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-012-0902-4
https://academic.hep.com.cn/fcse/CN/Y2012/V6/I3/253
CatalystSpecific surface area /(m2·g–1)Pore volume /(mL·g–1)Pore diameter /nm
HZSM-5364.320.3353.67
Fe/H-ZSM-5360.560.3223.57
Ir/H-ZSM-5351.910.2893.28
Tab.1  
Fig.1  
CatalystRelative crystallinitySiO2/%Al2O3/%Na2O/%Ir/%Fe/%
HZSM100%98.450.4000.2400
Fe/H-ZSM-5100%98.060.4800.3000.301
Ir/H-ZSM-5100%98.540.3980.230.3030
Tab.2  
CatalystTdi /°CWeakTdi /°CStrongTotal
HZSM-52690.2814730.2880.569
Fe/H-ZSM-52590.2744390.2060.480
Ir/H-ZSM-52520.2884300.1980.486
Tab.3  
Fig.2  
Fig.3  
Fig.4  
1 St?cker M. Methanol-to-hydrocarbons: Catalytic materials and their behavior. Microporous and Mesoporous Materials , 1999, 29(1–2): 3–48
doi: 10.1016/S1387-1811(98)00319-9
2 Chen J Q, Bozzano A, Glover B, Fuglerud T, Kvisle S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today , 2005, 106(1–4): 103–107
doi: 10.1016/j.cattod.2005.07.178
3 Marcus D M, Song W, Abubakar S M, Jani E, Sassi A, Haw J F. Reactions of halobenzenes with methanol on the microporous solid acids HBeta, HZSM-5, and HSAPO-5: halogenation does not improve the hydrocarbon pool. Langmuir , 2004, 20(14): 5946–5951
doi: 10.1021/la035944r
4 Barger P T, Vora B V U S. Patent. 2003, 6,534–692
5 Jia M, Lechert H, Forster H I. Studies on the acidity of dealuminated Y zeolite with different probe molecules. Zeolites , 1992, 12(1): 32–36
doi: 10.1016/0144-2449(92)90006-B
6 Dehertog W J H, Fromen G F. A catalytic route for aromatics production from LPG. Applied Catalysis A: General , 1999, 189(1): 63–75
doi: 10.1016/S0926-860X(99)00252-5
7 Tynj?l? P, Pakkanen T T, Mustamaki S. Modification of ZSM-5 zeolite with trimethyl phosphite. 2. Catalytic properties in the conversion of C1-C4 alcohols. Journal of Physical Chemistry B , 1998, 102(27): 5280–5286
doi: 10.1021/jp9806720
8 Tynj?l? P, Pakkanen T T. Modification of ZSM-5 zeolite with trimethyl phosphite part 1. Structure and acidity. Microporous and Mesoporous Materials , 1998, 20(4–6): 363–371
doi: 10.1016/S1387-1811(97)00050-4
9 Abubakar S M, Marcus D M, Lee J C, Ehresmann J O, Chen C Y, Kletnieks P W, Guenther D R, Hayman M J, Pavlova M, Nicholas J B, Haw J F. Structural and mechanistic investigation of a phosphate-modified HZSM-5 catalyst for methanol conversion. Langmuir , 2006, 22(10): 4836–4846
doi: 10.1021/la0534367
10 Kaarsholm M, Joensen F, Nerlov J, Cenni R, Chaouki J, Patience G S. Phosphorous modified ZSM-5: deactivation and product distribution for MTO. Chemical Engineering Science , 2007, 62(18–20): 5527–5532
doi: 10.1016/j.ces.2006.12.076
11 Al-Jarallah A M, El-Nafaty U A, Abdillahi M M. Effects of metal impregnation on the activity, selectivity and deactivation of a high silica MFI zeolite when converting methanol to light alkenes. Applied Catalysis A: General , 1997, 154(1–2): 117–127
doi: 10.1016/S0926-860X(96)00379-1
12 Zhang S, Zhang B. Ca modified ZSM-5 for high propylene selectivity from methanol. Reaction Kinetics Mechanisms and Catalysis , 2010, 99: 447–453
13 Murata K, Inaba M, Takahara I. Effects of surface modification of H-ZSM-5 catalysts on direct transformation of ethanol into lower olefins. Journal of the Japan Petroleum Institute , 2008, 51(4): 234–239
doi: 10.1627/jpi.51.234
14 Liu J, Zhang C, Shen Z, Hua W, Tang Y, Shen W, Yue Y, Xu H. Methanol to propylene: effect of phosphorus on a high silica HZSM-5 catalyst. Catalysis Communications , 2009, 10(11): 1506–1509
doi: 10.1016/j.catcom.2009.04.004
15 Valle B, Alonso A, Atutxa A, Gayubo A G, Bilbao J. Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catalysis Today , 2005, 106(1–4): 118–122
doi: 10.1016/j.cattod.2005.07.132
16 Furumoto Y, Harada Y, Tsunoji N, Takahashi A, Fujitani T, Ide Y, Sadakane M, Sano T. Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene. Applied Catalysis A: General , 2011, 399(1–2): 262–267
doi: 10.1016/j.apcata.2011.04.009
17 McVicker G B, Daage M, Touvelle M S, Hudson C W, Klein D P, Baird W C, Cook B R, Chen J G, Hantzer S, Vaughan D E W, Ellis E S, Feeley O C. Selective ring opening of naphthenic molecules. Journal of Catalysis , 2002, 210(1): 137–148
doi: 10.1006/jcat.2002.3685
18 Lu J, Zhao Z, Xu C, Zhang P, Duan A. FeHZSM-5 molecular sieves—highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene. Catalysis Communications , 2006, 7(4): 199–203
doi: 10.1016/j.catcom.2005.10.011
19 Asadi M, Talkhonceh, Mohammadrezaei A. CA patent , 2010, 2,642, 395
20 Olson D H, Kokotailo G T, Lawton S L, Meier W M. Crystal structure and structure-related properties of ZSM 5. Journal of Physical Chemistry , 1981, 85(15): 2238–2243
doi: 10.1021/j150615a020
21 Shao D D, Fan Q H, Li J X, Niu Z W, Wuc W S, Chen Y X, Wang X K. Removal of Eu(III) from aqueous solution using ZSM-5 zeolite. Microporous and Mesoporous Materials , 2009, 123(1–3): 1–9
doi: 10.1016/j.micromeso.2009.03.043
22 Koningsveld H, Bekkum H V, Jansen J C. On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry , 1987, 43: 127–132
23 Hardenberg T A J, Merten L, Mesman P, Muller M C, Nicolides C P. A catalytic method for the quantitative evaluation of crystallinites of ZSM-5 zeolite preparations. Zeolites , 1992, 12(6): 685–689
doi: 10.1016/0144-2449(92)90116-7
24 Liu J F, Liu Y, Peng L F. Aromatization of methane by using propane as co-reactant over cobalt and zinc-impregnated HZSM-5 catalysts. Journal of Molecular Catalysis A: Chemical , 2008, 280(1–2): 7–15
doi: 10.1016/j.molcata.2007.10.012
25 Campelo J M, Garcia A, Herencia J F, Luna D, Marinas J M, Romero A A. Conversion of alcohols (α-methylated series) on ALPO4 catalysts. Journal of Catalysis , 1999, 151(2): 307–314
doi: 10.1006/jcat.1995.1032
26 Arena F, Dario R, Parmalina A. A characterization study of the surface acidity of solid catalysts by temperature programmed methods. Applied Catalysis A: General , 1998, 170(1): 127–133
doi: 10.1016/S0926-860X(98)00041-6
27 Pour A N, Zare M, Kamali Shahri S M, Zamani Y, Alaei M R. Catalytic behaviors of bifunctional Fe-HZSM-5 catalyst in Fischer-Tropsch synthesis. Journal of Natural Gas Science and Engineering , 2009, 1(6): 183–189
doi: 10.1016/j.jngse.2009.11.003
28 Lorenz H, Turner S, Lebedev O I, van Tendeloo G, Kl?tzer B, Rameshan C, Pfaller K, Penner S. Pd-In2O3 interaction due to reduction in hydrogen: consequences for methanol steam reforming. Applied Catalysis A: General , 2010, 374(1–2): 180–188
doi: 10.1016/j.apcata.2009.12.007
29 Guisnet M, Magnoux P. Coking and deactivation of zeolites: influence of the pore structure. Applied Catalysis , 1989, 54(1): 1–27
doi: 10.1016/S0166-9834(00)82350-7
30 Curtin T, McMonagle J B, Hodnett B K. Influence of boria loading on the acidity of B2O3/Al2O3 catalysts for the conversion of cyclohexanone oxime to caprolactam. Applied Catalysis A: General , 1992, 93(1): 91–101
doi: 10.1016/0926-860X(92)80296-O
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed