Investigations on dehydration processes of trisodium citrate hydrates
Investigations on dehydration processes of trisodium citrate hydrates
Junyan GAO, Yanlei WANG, Hongxun HAO()
The State Research Center of Industrialization for Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
The dehydration processes of trisodium citrate (Na3C6H5O7) hydrates were investigated using thermogravimetry (TG), differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). It was found that the temperature of dehydration of trisodium citrate dihydrate was at 430.99 K. For trisodium citrate pentahydrate, there is a two-step dehydration process and the endothermal peaks appear at 337.23 K and 433.83 K, respectively. During the first step of dehydration process, the structure of trisodium citrate pentahydrate changed into the structure of trisodium citrate dihydrate. In addition, the kinetics of dehydration for trisoidum citrate hydrates was also investigated using TG data. According to the activation energies of dehydration calculated by Ozawa equation, it was found that the dehydration mechanisms of the two hydrates were different.
. Investigations on dehydration processes of trisodium citrate hydrates[J]. Frontiers of Chemical Science and Engineering, 2012, 6(3): 276-281.
Junyan GAO, Yanlei WANG, Hongxun HAO. Investigations on dehydration processes of trisodium citrate hydrates. Front Chem Sci Eng, 2012, 6(3): 276-281.
Gao J Y, Xie C, Wang Y L, Xu Z, Hao H X. Solubility data of trisodium citrate hydrates in aqueous solution and crystal-solution interfacial energy of the pentahydrate. Crystal Research and Technology , 2012, 47(4): 397–403 doi: 10.1002/crat.201100546
3
Steiner T, Koellner G. Crystalline p-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by X-ray diffraction. Journal of the American Chemical Society , 1994, 116(12): 5122–5128 doi: 10.1021/ja00091a014
4
Morris R E, Burton A, Bull L M, Zones S I. SSZ-51—A new aluminophosphate zeotype: synthesis, crystal structure, NMR, and dehydration properties. Chemistry of Materials , 2004, 16(15): 2844–2851 doi: 10.1021/cm0353005
5
Boonchom B J, Vittayakorn N. Dehydration behavior of synthetic Al0.5Fe0.5PO4·2.5H2O. Journal of Chemical & Engineering Data , 2010, 55(9): 3307–3311 doi: 10.1021/je100096e
6
Frost R L, Kloprogge J T. Heating stage spectroscopy: infrared, Raman, energy dispersive X-ray and X-ray photoelectron spectroscopy. In: Brown M E, Gallagher P K, eds. Handbook of Thermal Analysis and Calorimetry . Oxford: Elsevier, 2008, 171–173
7
Sestak J. Thermodynamical Properties of Solids. Prague: Academia Publishers, 1984, 1–5
8
Young D. Decomposition of Solids. Oxford: Pergamon Press, 1966, 55–109
9
Arivanandhan M, Huang X M, Uda S, Bhagavannarayana G, Vijayan N, Sankaranarayanan K, Ramasamy P. Directional growth of organic NLO crystal by different growth methods: a comparative study by means of XRD, HRXRD and laser damage threshold. Journal of Crystal Growth , 2008, 310(21): 4587–4592 doi: 10.1016/j.jcrysgro.2008.08.036
10
Duan Y, Li J, Yang X, Hu L, Wang Z, Liu Y, Wang C. Kinetic analysis on the non-isothermal dehydration by integral master-plots method and TG-FTIR study of zinc acetate dihydrate. Journal of Analytical and Applied Pyrolysis , 2008, 83(1): 1–6 doi: 10.1016/j.jaap.2008.05.001
11
Lee S B, Fasina O. Fasina O. TG-FTIR analysis of switchgrass pyrolysis. Journal of Analytical and Applied Pyrolysis , 2009, 86(1): 39–43 doi: 10.1016/j.jaap.2009.04.002
12
dos Santos A V, Matos J R. Dehydration studies of rare earth p-toluenesulfonate hydrates by TG/DTG and DSC. Journal of Alloys and Compounds , 2002, 344(1-2): 195–198 doi: 10.1016/S0925-8388(02)00339-0
13
Yonemochi E, Hoshino T, Yoshihashi Y, Terada K. Evaluation of the physical stability and local crystallization of amorphous terfenadine using XRD-DSC and micro-TA. Thermochimica Acta , 2005, 432(1): 70–75 doi: 10.1016/j.tca.2005.02.023
14
Fischer A, Palladino G. Trisodium citrate dihydrate. Acta Crystallographica. Section E, Structure Reports Online , 2003, 59(11): m1080–m1082 doi: 10.1107/S1600536803024395
15
Voissat B, Rodier N. Crystal structure of sodium citrate hydrate. Bulletin de la Societe Chimique de France , 1986, 4: 522–525
16
Vyazovkin S. Isoconversional kinetics. In: Brown M E, Gallagher P K, eds. Handbook of Thermal Analysis and Calorimetry . Oxford: Elsevier, 2008, 504–506
17
Ozawa T. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan , 1965, 38(11): 1881–1886 doi: 10.1246/bcsj.38.1881
18
Gamlin C D, Dutta N K, Choudhury N R. Evaluation of knietic parameters of thermal and oxidative decomposition of base oils by conventional, isothermal and modulated TGA, and pressure DSC. Thermochim Acta , 2002, 392-393: 357–369