Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2012, Vol. 6 Issue (4): 381-388   https://doi.org/10.1007/s11705-012-1216-2
  RESEARCH ARTICLE 本期目录
Preparation of a Pb loaded gas diffusion electrode and its application to CO2 electroreduction
Preparation of a Pb loaded gas diffusion electrode and its application to CO2 electroreduction
Ang LI, Hua WANG(), Jinyu HAN, Li LIU
Key Laboratory for Green Chemical Technology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(335 KB)   HTML
Abstract

A Pb loaded gas diffusion electrode was fabricated and used for the electroreduction of CO2 to formic acid. The Pb/C catalyst was prepared by isometric impregnation. The crystal structure and morphology of the Pb/C catalyst were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). The preparation conditions of the gas diffusion electrode were optimized by adjusting the amounts of polytetrafluoroethylene (PTFE) in the gas diffusion layer and acetylene black in the catalytic layer. The electrochemical performance of the as-prepared gas diffusion electrode was studied by chronoamperometry and cyclic voltammetry. The optimized gas diffusion electrode showed good catalytic performance for the electroreduction of CO2. The current efficiency of formic acid after 1 h of operation reached a maximum of 22% at -2.0 V versus saturated calomel electrode (SCE).

Key wordselectroreduction    carbon dioxide    lead catalyst    gas diffusion electrode    formic acid
收稿日期: 2012-02-24      出版日期: 2012-12-05
Corresponding Author(s): WANG Hua,Email:tjuwanghua@tju.edu.cn   
 引用本文:   
. Preparation of a Pb loaded gas diffusion electrode and its application to CO2 electroreduction[J]. Frontiers of Chemical Science and Engineering, 2012, 6(4): 381-388.
Ang LI, Hua WANG, Jinyu HAN, Li LIU. Preparation of a Pb loaded gas diffusion electrode and its application to CO2 electroreduction. Front Chem Sci Eng, 2012, 6(4): 381-388.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-012-1216-2
https://academic.hep.com.cn/fcse/CN/Y2012/V6/I4/381
Fig.1  
Fig.1  
Fig.1  
Fig.1  
Fig.1  
Fig.1  
Fig.2  
Fig.2  
Fig.2  
Fig.2  
Fig.2  
Fig.2  
Fig.3  
Fig.3  
Fig.3  
Fig.3  
Fig.3  
Fig.3  
SampleAcetylene black:PTFE/(g:g)a)Acetylene black:Na2SO4/(g:g)Thickness /mmCO2 permeability /(103cm3(STP)·cm-2·s-1·cm-1 Hg)
GDL-11:12.5:10.383.90
GDL-23:22.5:10.385.21
GDL-37:32.5:10.385.88
Tab.1  
Fig.4  
Fig.4  
Fig.4  
Fig.4  
Fig.4  
Fig.4  
Fig.5  
Fig.5  
Fig.5  
Fig.5  
Fig.5  
Fig.5  
Fig.6  
Fig.6  
Fig.6  
Fig.6  
Fig.6  
Fig.6  
Fig.7  
Fig.7  
Fig.7  
Fig.7  
Fig.7  
Fig.7  
Fig.8  
Fig.8  
Fig.8  
Fig.8  
Fig.8  
Fig.8  
Time interval/min5–1010–2020–3030–4040–5050–60
Average reaction rate/(mg·L-1·min-1)0.061.440.161.380.840.25
Tab.2  
Fig.9  
Fig.9  
Fig.9  
Fig.9  
Fig.9  
Fig.9  
1 Mikkelsen M, Jorgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science , 2010, 3(1): 43–81
doi: 10.1039/b912904a
2 Wang W, Wang S P, Ma X B, Gong J L. Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews , 2011, 40(7): 3703–3727
doi: 10.1039/c1cs15008a
3 Jitaru M. Electrochemical carbon dioxide reduction—fundamental and topics. Journal of the University of Chemical Technology and Metallurgy , 2007, 42(4): 333–344
4 Furuya N, Yamazaki T, Shibata M. High performance Ru-Pd catalysts for CO2 reduction at gas-diffusion electrodes. Journal of Electroanalytical Chemistry , 1997, 431(1): 39–41
5 Li H, Oloman C. The electro-reduction of carbon doxide in a continuous reactor. Journal of Applied Electrochemistry, 2005, 35(10): 955–965
6 Azuma M, Hashimoto K, Hiramoto M, Watanabe M, Sakata T. Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. Journal of the Electrochemical Society , 1990, 137(6): 1772–1778
doi: 10.1149/1.2086796
7 Todoroki M, Hara K, Kudo A, Sakata T. Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution. Journal of Electroanalytical Chemistry , 1995, 394(1–2): 199–203
8 Innocent B, Liaigre D, Pasquier D, Ropital F, Leger J M, Kokoh K B. Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium. Journal of Applied Electrochemistry , 2009, 39(2): 227–232
doi: 10.1007/s10800-008-9658-4
9 Koleli F, Atilan T, Palamut N, Gizir A M, Aydin R, Hamann C H. Electrochemical reduction of CO2 at Pb- and Sn-electrodes in a fixed-bed reactor in aqueous K2CO3 and KHCO3 media. Journal of Applied Electrochemistry , 2003, 33(5): 447–450
doi: 10.1023/A:1024471513136
10 Koleli F, Balun D. Reduction of CO2 under high pressure and high temperature on Pb-granule electrodes in a fixed-bed reactor in aqueous medium. Applied Catalysis A, General , 2004, 274(1–2): 237–242
doi: 10.1016/j.apcata.2004.07.006
11 Machunda R L, Ju H K, Lee J Y. Electrocatalytic reduction of CO2 gas at Sn based gas diffusion electrode. Current Applied Physics, 2011, 11(4): 986–988
12 Machunda R L, Lee J G, Lee J Y. Microstructural surface changes of electrodeposited Pb on gas diffusion electrode during electroreduction of gas-phase CO2. Surface and Interface Analysis , 2010, 42(6–7): 564–567
doi: 10.1002/sia.3245
13 Subramanian K, Asokan K, Jeevarathinam D, Chandrasekaran M. Electrochemical membrane reactor for the reduction of carbondioxide to formate. Journal of Applied Electrochemistry , 2007, 37(2): 255–260
doi: 10.1007/s10800-006-9252-6
14 Lee J Y, Kwon Y K, Machunda R L, Lee H J. Electrocatalytic recycling of CO2 and small organic molecules. Chemistry, an Asian Journal , 2009, 4(10): 1516–1523
doi: 10.1002/asia.200900055
15 Jitaru M, Lowy D A, Toma M, Toma B C, Oniciu L. Electrochemical reduction of carbon dioxide on flat metallic cathodes. Journal of Applied Electrochemistry , 1997, 27(8): 875–889
doi: 10.1023/A:1018441316386
16 Oloman C, Li H. Electrochemical processing of carbon dioxide. ChemSusChem , 2008, 1(5): 385–391
doi: 10.1002/cssc.200800015
17 Hori Y, Konishi H, Futamura T, Murata A, Koga O, Sakurai H, Oguma K. Deactivation of copper electrode in electrochemical reduction of CO2. Electrochimica Acta , 2005, 50(27): 5354–5369
doi: 10.1016/j.electacta.2005.03.015
18 Sudoh M, Arai K, Izawa Y, Suzuki T, Uno M, Tanaka M, Hirao K, Nishiki Y. Evaluation of Ag-based gas-diffusion electrode for two-compartment cell used in novel chlor-alkali membrane process. Electrochimica Acta , 2011, 56(28): 10575–10581
doi: 10.1016/j.electacta.2011.06.013
19 Sanchez-Sanchez C M, Montiel V, Tryk D A, Aldaz A, Fujishima A. Electrochemical approaches to alleviation of the problem of carbon dioxide accumulation. Pure and Applied Chemistry , 2001, 73(12): 1917–1927
doi: 10.1351/pac200173121917
20 Lee K R, Lim J H, Lee J K, Chun H S. Reduction of carbon dioxide in 3-dimensional gas diffusion electrode. Korean Journal of Chemical Engineering , 1999, 16(6): 829–836
doi: 10.1007/BF02698360
21 Chaplin R P S, Wragg A A. Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation. Journal of Applied Electrochemistry , 2003, 33(12): 1107–1123
doi: 10.1023/B:JACH.0000004018.57792.b8
22 Wang Y, Nguyen T S, Liu X W, Wang X. Novel palladium-lead (Pd-Pb/C) bimetallic catalysts for electrooxidation of ethanol in alkaline media. Journal of Power Sources , 2010, 195(9): 2619–2622
doi: 10.1016/j.jpowsour.2009.11.072
23 Kwon Y K, Lee J Y. Formic acid from carbon dioxide on nanolayered electrocatalyst. Electrocatalysis , 2010, 1(2–3): 108–115
doi: 10.1007/s12678-010-0017-y
24 Kenjo T, Kawatsu K. Current–limiting factors and the location of the reaction area in PTFE-bonded double-layered oxygen electrodes. Electrochimica Acta , 1985, 30(2): 229–233
25 Bidault F, Brett D J L, Middleton P H, Brandon N P. Review of gas diffusion cathodes for alkaline fuel cells. Journal of Power Sources , 2009, 187(1): 39–48
26 Chen-Yang Y W, Hung T F, Huang J, Yang F L. Novel single-layer gas diffusion layer based on PTFE/carbon black composite for proton exchange membrane fuel cell. Journal of Power Sources , 2007, 173(1): 183–188
doi: 10.1016/j.jpowsour.2007.04.080
27 Gharibi H, Javaheri M, Mirzaie R A. The synergy between multi-wall carbon nanotubes andVulcan XC72R in microporous layers. International Journal of Hydrogen Energy , 2010, 35(17): 9241–9251
doi: 10.1016/j.ijhydene.2009.08.092
28 Kim J H, Yonezawa S, Takashima M. Preparation and characterization of Ni-PTFE plate as an electrode for alkaline fuel cell: effects of conducting materials on the performance of electrode. International Journal of Hydrogen Energy , 2010, 35(16): 8707–8714
doi: 10.1016/j.ijhydene.2010.05.110
29 Kobayashi T, Takahashi H. Novel CO2 Electrochemical Reduction to Methanol for H2 Storage. Energy & Fuels , 2004, 18(1): 285–286
doi: 10.1021/ef030121v
30 Kaneco S, Iwao R, Iiba K, Ohta K, Mizuno T. Electrochemical conversion of carbon dioxide to formic acid on Pb in KOH/methanol electrolyte at ambient temperature and pressure. Energy , 1998, 23(12): 1107–1112
doi: 10.1016/S0360-5442(98)00054-1
31 Chu D B, Qin G X, Yuan X M, Xu M, Zheng P, Lu J. Fixation of CO2 by electrocatalytic reduction and electropolymerization in ionic liquid-H2O solution. ChemSusChem , 2008, 1(3): 205–209
doi: 10.1002/cssc.200700052
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed