Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2012, Vol. 6 Issue (4): 432-435   https://doi.org/10.1007/s11705-012-1219-z
  COMMUNICATION 本期目录
Preconcentration of trace elements by adsorption onto a niobium wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer
Preconcentration of trace elements by adsorption onto a niobium wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer
Satoshi KANECO1(), Hiroaki KITANAGA1, Hideyuki KATSUMATA1, Tohru SUZUKI2
1. Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Mie 514–8507, Japan; 2. Environmental Preservation Center, Mie University, Mie 514–8507, Japan
 全文: PDF(75 KB)   HTML
Abstract

In the present work, a new preconcentration method of trace elements by adsorption onto a niobium wire has been developed for electrothermal atomization atomic absorption spectrometry (ETAAS) with a tungsten tube atomizer. Detection limits (pg·mL–1) by this method combined with ETAAS were 45 for bismuth, 7.0 for cadmium, 20 for copper, 1.3 for gold, 36 for lead, 65 for manganese, 9.5 for rhodium and 19 for silver.

Key wordspreconcentration    adsorption onto niobium wire    electrothermal atomization atomic absorption spectrometry    tungsten tube atomizer    trace elements
收稿日期: 2012-07-30      出版日期: 2012-12-05
Corresponding Author(s): KANECO Satoshi,Email:kaneco@chem.mie-u.ac.jp   
 引用本文:   
. Preconcentration of trace elements by adsorption onto a niobium wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer[J]. Frontiers of Chemical Science and Engineering, 2012, 6(4): 432-435.
Satoshi KANECO, Hiroaki KITANAGA, Hideyuki KATSUMATA, Tohru SUZUKI. Preconcentration of trace elements by adsorption onto a niobium wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer. Front Chem Sci Eng, 2012, 6(4): 432-435.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-012-1219-z
https://academic.hep.com.cn/fcse/CN/Y2012/V6/I4/432
ElementDetection limit /(ng·mL-1)Improvement
This workSample injection method a)Reference
Cd0.00700.046[19]6.6
Ag0.0190.037[20]1.9
Cu0.0200.072[21]3.6
Pb0.0360.80[21]22.2
Bi0.0450.60[21]13.3
Mn0.0650.080[21]1.2
Au1.31.3[22]1.0
Rh9.5165[23]17.4
Tab.1  
ElementDetection limit /(ng·mL-1)
This workICP-OES a)GFAAS a)
Cd0.00700.100.008
Ag0.0190.600.010
Cu0.0200.400.10
Pb0.0361.02.0
Bi0.0451.00.40
Mn0.0650.100.020
Au1.31.00.10
Rh9.55.00.80
Tab.2  
1 Camel V. Solid phase extraction of trace elements. Spectrochimica Acta. Part A: Molecular Spectroscopy , 2003, 58(7): 1177–1233
doi: 10.1016/S0584-8547(03)00072-7
2 Terada K. Preconcentration of trace elements by sorption. Analytical Sciences , 1991, 7(2): 187–198
doi: 10.2116/analsci.7.187
3 Wolff E W, Landy M P, Peel D A. Preconcentration of cadmium, copper, lead, and zinc in water at the 10-12 g/g level by adsorption onto tungsten wire followed by flameless atomic absorption spectrometry. Analytical Chemistry , 1981, 53(11): 1566–1570
doi: 10.1021/ac00234a006
4 Lu G, Xu J, Xu T, Jin L, Fang Y. Determination of trace amounts of gold in waste water by graphite furnace atomic-absorption spectrophotometry with preconcentration on trioctylphosphine oxide chemically modified tungsten wire matrix. Talanta , 1992, 39(1): 51–53
doi: 10.1016/0039-9140(92)80049-J
5 Yavuz Ataman O. Vapor generation and atom traps: atomic absorption spectrometry at the ng/L level. Spectrochimica Acta. Part B, Atomic Spectroscopy , 2008, 63(8): 825–834
doi: 10.1016/j.sab.2008.03.013
6 Liu R, Wu P, Xu K, Lv Y, Hou X. Highly sensitive and interference-free determination of bismuth in environmental samples by electrothermal vaporization atomic fluorescence spectrometry after hydride trapping on iridium-coated tungsten coil. Spectrochimica Acta. Part B, Atomic Spectroscopy , 2008, 63(6): 704–709
doi: 10.1016/j.sab.2008.03.010
7 Simi?o de Souza S, Santos D Jr, Kruga F J, Barbosa F Jr. Exploiting in situ hydride trapping in tungsten coil atomizer for Se and As determination in biological and water samples. Talanta , 2007, 73(3): 451–457
doi: 10.1016/j.talanta.2007.04.031
8 Zachariadis G, ed. Inductively Coupled Plasma Atomic Emission Spectrometry: A Model Multi-elemental Technique for Modern Analytical Laboratory. New York: Nova Science Publishers, Inc., 2012
9 Nelms S, ed. Inductively Coupled Plasma Mass Spectrometry Handbook. Oxford: Blackwell, 2005
10 Sawada K, ed. A Laboratory Guide to Instrumental Analysis for Young Chemists (In Japanese). Tokyo: Kodan Scientific Co., 2006
11 Svanberg S. Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications. 4th edition. Berlin: Springer, 2004
12 Rahman M A, Kaneco S, Suzuki T, Katsumata H, Ohta K. Slurry sampling for direct analysis of lead in Bangladeshi vegetable samples by molybdenum electrothermal atomizer atomic absorption spectrometry. ITE Letters on Batteries, New Technologies & Medicine , 2004, 5(4): 363–368
13 Rahman M A, Kaneco S, Suzuki T, Katsumata H, Ohta K. Slurry sampling techniques for the determination of lead in Bangladeshi fish samples by electrothermal atomic absorption spectrometry with a metal tube atomizer. Annali di Chimica , 2005, 5(5): 325–333
doi: 10.1002/adic.200590037
14 Amin M N, Okada H, Itoh S, Suzuki T, Kaneco S, Ohta K. Determination of chromium in river waters by electrothermal atomic absorption spectrometry with preconcentration on a tantalum wire. Fresenius' Journal of Analytical Chemistry , 2001, 371(8): 1130–1133
doi: 10.1007/s002160101089
15 Amin M N, Kaneco S, Nomura K, Suzuki T, Ohta K. Determination of antimony in waters by electrothermal atomic absorption spectrometry with preconcentration on a tantalum wire. Mikrochimica Acta , 2003, 141(1-2): 87–91
doi: 10.1007/s00604-002-0931-7
16 Rahman M A, Kaneco S, Amin M N, Suzuki T, Ohta K. Determination of silver in environmental samples by tungsten wire preconcentration method—electrothermal atomic absorption spectrometry. Talanta , 2004, 62(5): 1047–1050
doi: 10.1016/j.talanta.2003.10.035
17 Amin M N, Kaneco S, Nakano Y, Katsumata H, Suzuki T, Ohta K. Preconcentration of trace lead by adsorption onto a tantalum wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer. Microchemical Journal , 2007, 86(1): 89–93
doi: 10.1016/j.microc.2006.11.002
18 Amin M N, Kaneco S, Nakano Y, Katsumata H, Suzuki T, Ohta K. Preconcentration technique for manganese by adsorption onto a tantalum wire for tungsten tube atomizer electrothermal atomization atomic absorption spectrometry. Mikrochimica Acta , 2008, 162(1-2): 73–79
doi: 10.1007/s00604-007-0860-6
19 Suzuki S, Ohta K. Reduction of interferences with thiourea in the determination of cadmium by electrothermal atomic absorption spectrometry. Analytical Chemistry , 1982, 54(11): 1686–1689
doi: 10.1021/ac00248a007
20 Ohta K, Kaneco S, Itoh S, Mizuno T. Electrothermal atomic absorption spectrometric determination of silver in biological materials with a molybdenum tube atomizer. Analytica Chimica Acta , 1992, 267(1): 131–136
doi: 10.1016/0003-2670(92)85014-W
21 Suzuki S, Ohta K. Electrothermal atomic absorption spectrometry with metal atomizer. Prog in Anal Atom Spectrosc , 1983, 6: 49–162
22 Ohta K, Isiyama T, Yokoyama M, Mizuno T. Determination of gold in biological materials by electrothermal atomic absorption spectrometry with a molybdenum tube atomizer. Talanta , 1995, 42(2): 263–267
doi: 10.1016/0039-9140(94)00253-O
23 Ohta K, Ogawa J, Mizuno T. Determination of rhodium in biological materials by electrothermal atomic absorption spectrometry with a tungsten tube atomizer. Analytical Letters , 1997, 30(4): 787–795
doi: 10.1080/00032719708006424
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed