Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2012, Vol. 6 Issue (4): 443-452   https://doi.org/10.1007/s11705-012-1225-1
  RESEARCH ARTICLE 本期目录
Optimization of cellulase production using Trichoderma reesei by RSM and comparison with genetic algorithm
Optimization of cellulase production using Trichoderma reesei by RSM and comparison with genetic algorithm
Saravanan P(), Muthuvelayudham R, Rajesh Kannan R, Viruthagiri T
Department of Chemical Engineering, Annamalai University, Annamalainagar-608002, Tamilnadu, India
 全文: PDF(282 KB)   HTML
Abstract

The potential of Trichoderma reesei for cellulase production using pineapple waste as substrate has been investigated. A maximum cellulase activity of 9.23 U/mL is obtained under the optimum experimental conditions: pH (5.5), temperature (37.5°C), initial substrate concentration (3%), inoculum concentration (6.6 × 108?CFU/mL), and culture time (6 days). Box-Behnken design (BBD) statistical tool and genetic algorithm (GA) are used to optimize the process parameters. The BBD study of linear and quadratic interactive effects of experimental variables on the desired response of cellulase activity showed that the second order polynomial is significant (R2 = 0.9414). The experimental cellulase activity under the optimal conditions identified by the BBD is 9.23 U/mL and that by GA is 6.98 U/mL. This result indicates that the BBD model gives better result than GA in the present case.

Key wordscellulase    pineapple waste    Trichoderma reesei    Box-Behnken design    genetic algorithm
收稿日期: 2012-07-16      出版日期: 2012-12-05
Corresponding Author(s): P Saravanan,Email:pancha_saravanan@yahoo.com   
 引用本文:   
. Optimization of cellulase production using Trichoderma reesei by RSM and comparison with genetic algorithm[J]. Frontiers of Chemical Science and Engineering, 2012, 6(4): 443-452.
Saravanan P, Muthuvelayudham R, Rajesh Kannan R, Viruthagiri T. Optimization of cellulase production using Trichoderma reesei by RSM and comparison with genetic algorithm. Front Chem Sci Eng, 2012, 6(4): 443-452.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-012-1225-1
https://academic.hep.com.cn/fcse/CN/Y2012/V6/I4/443
FactorsRange and Level
–10+1
pH45.57
Temperature /°C3037.545
Substrate concentration /%135
Inoculum concentration /( × 108 CFU?mL-1)2.26.611
Days159
Tab.1  
Run orderpHTemperature /°CSubstrate concentration /(%)Inoculum concentration /(CFU?mL–1)DaysCellulase activity /(U?mL–1)
ExperimentalCorrelationResidual
1100106.66.5810.019
2011005.55.3120.188
3–101007.77.3690.331
41000–15.95.8560.044
5001017.06.7880.213
600–10–16.06.363–0.362
7110006.36.0690.231
8–1–10006.47.181–0.781
9000009.19.145–0.045
1000–1–106.36.1000.200
110–10016.46.1250.275
12000–1–17.77.4000.300
13000009.239.1450.085
14000009.09.145–0.145
15100–106.26.1440.056
16000009.149.1450.255
17010015.96.137–0.237
18101004.94.7440.156
190001–15.96.038–0.137
200–10–107.67.800–0.200
21000116.76.850–0.150
22010–105.85.912–0.112
230–1–1005.95.5380.363
24001–106.87.512–0.712
25000009.149.145–0.005
2600–1106.76.5380.163
27000–117.16.8130.288
28–100–108.07.8190.181
2900–1014.95.375–0.475
300–11006.86.5500.250
31010107.06.6000.400
320010–15.95.5750.325
3310–1006.36.481–0.181
34100015.95.969–0.069
35–110005.05.294–0.294
360–100–16.66.5630.037
37–1000–16.76.4310.269
381–10005.05.256–0.256
39000009.09.145–0.145
400–10106.15.7880.313
41001105.05.750–0.750
4201–1006.05.7000.300
43–100106.26.0560.144
440100–15.05.475–0.475
45–100016.76.5440.156
46–10–1005.05.006–0.006
Tab.2  
Itema)CoefficientSE coefficientTP
Constant–44.2446.671–6.6320.000
pH5.5381.0115.4800.000
T1.7370.2197.9370.000
SC5.4660.6927.9000.000
IC–0.6140.346–1.7740.088
Days0.2140.3440.6230.539
pH × pH–0.6820.061–11.1890.000
T × T–0.0300.002–12.1000.000
SC × SC–0.4280.034–12.4650.000
IC × IC–0.0600.009–6.9980.000
Days × Days–0.0880.009–10.2780.000
pH × T0.0600.0183.3310.003
pH × SC–0.3420.068–5.0580.000
pH × IC0.0920.0342.7140.012
pH × Days0.0000.0340.0001.000
T × SC–0.0230.014–1.7270.096
T × I0.0230.0073.3310.003
T × Days0.0090.0071.3570.187
SC × IC–0.0690.025–2.7140.012
SC × Days0.0690.0252.7140.012
IC × Days0.0220.0131.7270.096
Tab.3  
SourceDFSeq SSAdj SSAdj MSFP
Regression20.00065.94265.9423.29720.0700.000
Linear5.0004.67520.0614.01224.4300.000
Square5.00048.50748.5079.70159.0600.000
Interaction10.00012.76012.7601.2767.7700.000
Residual error25.0004.1064.1060.164
Lack-of-fit20.0003.9903.9900.2008.5700.013
Pure error5.0000.1160.1160.023
Total45.00070.049
Tab.4  
Fig.1  
Fig.1  
Fig.1  
Fig.1  
Fig.1  
Fig.1  
Fig.2  
Fig.2  
Fig.2  
Fig.2  
Fig.2  
Fig.2  
Fig.3  
Fig.3  
Fig.3  
Fig.3  
Fig.3  
Fig.3  
Fig.4  
Fig.4  
Fig.4  
Fig.4  
Fig.4  
Fig.4  
Fig.5  
Fig.5  
Fig.5  
Fig.5  
Fig.5  
Fig.5  
RunpHT/°CSC /%IC × 108 /(CFU?mL-1)DaysCellulase activity /(U?mL-1)
BBD5.537.536.6059.23
GA4.1042.91.062.208.87306.98
Tab.5  
Fig.6  
Fig.6  
Fig.6  
Fig.6  
Fig.6  
Fig.6  
MicroorganismSubstrateCellulase yield /(U·mL–1)References
Trichoderma reeseiPineapple waste9.23This work
Trichoderma reeseiWhet brawn10.6[47]
Trichoderma reeseiPea peel waste3.29[48]
Trichoderma reeseiMunicipal solid waste4.38[49]
Tab.6  
1 Aristidou A, Penttil? M. Metabolic engineering applications to renewable resource utilization. Current Opinion in Biotechnology , 2000, 11(2): 187–198
doi: 10.1016/S0958-1669(00)00085-9 pmid:10753763
2 Jeffries T W, Jin Y S. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Advances in Applied Microbiology , 2000, 47: 221–268
doi: 10.1016/S0065-2164(00)47006-1 pmid:12876799
3 Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Applied Microbiology and Biotechnology , 2001, 56(1–2): 17–34
doi: 10.1007/s002530100624 pmid:11499926
4 Alriksson B, Rose S H, van Zyl W H, Sj?de A, Nilvebrant N O, J?nsson L J. Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Applied and Environmental Microbiology , 2009, 75(8): 2366–2374
doi: 10.1128/AEM.02479-08 pmid:19251882
5 Mandels M, Hontz L, Nystrom J, Lee R Lynd I B. Enzymatic hydrolysis of waste cellulose. Biotechnology and Bioengineering , 1974, 16(11): 1471–1493
doi: 10.1002/bit.260161105 pmid:19937801
6 Omojasola P, Folakemi J, Omowumi P, Ibiyemi S A. Cellulase production by some fungi cultured on pineapple waste. Nature and Science , 2008, 6: 64–79
7 Pranner J. Environmental Microbiology and Waste Utilization. London: Academic press, 1979, 67–69
8 Wang N S. Cellulose degradation. Bioengineering , 1979, 21: 725
9 Hammerschlag R. Ethanol’s energy return on investment: a survey of the literature 1990-present. Environmental Science & Technology , 2006, 40(6): 1744–1750
doi: 10.1021/es052024h pmid:16570592
10 Lynd L R, Laser M S, Bransby D, Dale B E, Davison B, Hamilton R, Himmel M, Keller M, McMillan J D, Sheehan J, Wyman C E. How biotech can transform biofuels. Nature Biotechnology , 2008, 26(2): 169–172
doi: 10.1038/nbt0208-169 pmid:18259168
11 Nazir A, Soni R, Saini H S, Kaur A, Chadha B S. Profiling differential expression of cellulases and metabolite footprints in Aspergillus terreus. Applied Biochemistry and Biotechnology , 2010, 162(2): 538–547
doi: 10.1007/s12010-009-8775-9 pmid:19779865
12 Ojumu T V, Solomon B O, Betiku E, Layokun S K, Amigun B. Cellulase production by Aspergillus flavus linn isolate NSPR 101 fermented in sawdust, bagasse and corncob. African Journal of Biotechnology , 2003, 2: 150–152
13 Siddiqui K S, Saqib A A, Rashid M H, Rajoka M I. Carboxyl group modification significantly altered the kinetic properties of purified carboxymethylcellulase from Aspergillus niger. Enzyme and Microbial Technology , 2000, 27(7): 467–474
doi: 10.1016/S0141-0229(00)00254-4 pmid:10978768
14 Jagtap S, Rao M. Purification and properties of a low molecular weight 1,4-beta-d-glucan glucohydrolase having one active site for carboxymethyl cellulose and xylan from an alkalothermophilic Thermomonospora sp. Biochemical and Biophysical Research Communications , 2005, 329(1): 111–116
doi: 10.1016/j.bbrc.2005.01.102 pmid:15721281
15 Guo R, Ding M, Zhang S L, Xu G J, Zhao F K. Purification and characterization of two endo-1,4-glucanases from mollusca, ampullaria crossean. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology , 2008, 178: 209–215
16 Thongekkaew J, Hiroko Ikeda H, Masaki K, Iefuji H. An acid and thermos table carboxymethyl cellulase from the yeast. Protein Expression and Purification , 2008, 60: 140–146
doi: 10.1016/j.pep.2008.03.021 pmid:18479937
17 Immanuel G, Dhanusha R, Prema P, Palavesam A. Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. International Journal of Environmental Science and Technology , 2006, 3: 25–34
18 McCarthy J. Lignocellulose-degrading actinomycetes. FEMS Microbiology Letters , 1987, 46(2): 145–163
doi: 10.1111/j.1574-6968.1987.tb02456.x
19 Mandels M, Weber J, Parizek R. Enhanced cellulase production by a mutant of Trichoderma viride. Applied Microbiology , 1971, 21(1): 152–154
pmid:5099761
20 Miettinen-Oinonen A, Suominen P. Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric. Applied and Environmental Microbiology , 2002, 68(8): 3956–3964
doi: 10.1128/AEM.68.8.3956-3964.2002 pmid:12147496
21 Lee H, Kim B K, Lee Y J, Chung C H, Lee J W. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, bacillus subtilis. Enzyme and Microbial Technology , 2010, 48: 38–42
doi: 10.1016/j.enzmictec.2009.07.009
22 Schülein M. Protein engineering of cellulases. Biochimica et Biophysica Acta , 2000, 1543(2): 239–252
doi: 10.1016/S0167-4838(00)00247-8 pmid:11150609
23 Duenas R, Tengerdy R P, Gutierrez C M. Cellulase production by mixed fungi in solid-substrate fermentation of bagasse. World Journal of Microbiology & Biotechnology , 1995, 11: 333–337
doi: 10.1007/BF00367112
24 Bisaria V, Ghose T K. S and, Ghose T K. Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products. Enzyme and Microbial Technology , 1981, 3(2): 90–104
doi: 10.1016/0141-0229(81)90066-1
25 Gautam S P, Bundela P S, Pandey A K. Jamaluddin, Awasthi M K, Sarsaiya S. Optimization of the medium for the production of cellulase by the Trichoderma viride using submerged fermentation. International Journal of Environmental Science , 2010, 1: 656–669
26 Morton J F. Optimization of cellulase production by Aspergillus niger and Tricoderma viride using sugar cane waste. Fruits of Warm Climates , 1987, 18–28
27 Nigam J N. Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. Journal of Biotechnology , 2000, 80(2): 189–193
doi: 10.1016/S0168-1656(00)00246-7 pmid:10908799
28 Tanaka K, Hilary Z D, Ishizaki A. Cellulase production by Aspergillus flavus linn isolate NSPR 101 fermented in sawdust, bagasse and corncob. Journal of Bioscience and Bioengineering , 1999, 87(5): 642–646
doi: 10.1016/S1389-1723(99)80128-5 pmid:16232532
29 Khalil A. Application of central composite design based response surface methodology in parameter optimization and on cellulase production using agricultural waste. Bioresources , 2006, 1(2): 220–232
30 Krishna S H, Rao K C S, Babu J S, Reddy D S. Studies on the production and application of cellulase from Trichoderma reesei QM-9414. Bioprocess and Biosystems Engineering , 2000, 22(5): 467–470
31 Solomon B O, Amigun B, Betiku E, Ojumu T V, Layokun S K. Measurement of cellulase activities. African Journal of Biotechnology , 1999, 16: 61–68
32 Muthuvelayudham R, Viruthagiri T. Application of central composite design based response surface methodology in parameter optimization and on cellulase production using agricultural waste. International Journal of Chemical and Biological Engineering , 2010, 3: 97–104
33 Krishna S, Rao K C S, Babu J S, Reddy D S. Some new three level design for the study of quantitative variable. Bioprocess Engineering , 2000, 22: 467–470
34 Ghose T K. Waste management in pulp & paper industry waste pure. Applied Chemistry , 1987, 59: 257–268
doi: 10.1351/pac198759020257
35 Chang X G, Yang J, Wang D. Box-Behnken design: an alternative for the optimization of analytical methods. Chemical Product and Process Modeling , 2011, 6: Article 14
36 Arvind K, Prasad B, Mishra I M. Using genetic algorithms coupling neural networks in a study of xylitol production: medium optimization. Chemical Engineering & Technology , 2007, 30: 932–937
37 Jahangeer S, Sohail M, Shahzad S, Ahmad A, Khan S A. Screening and characterization of fungal cellulases isolated from the native environmental source. Pakistan Journal of Botany , 2005, 37(3): 739–748
38 Sherief A A, El-Tanash A B, Atia N. El-Tanash, Atia N. Cellulase production by Aspergillus fumigatus grown on mixed substrate of rice straw and wheat bran. Research Journal of Microbiology , 2010, 5(3): 199–211
doi: 10.3923/jm.2010.199.211
39 Jaradat Z, Dawagreh A, Ababneh Q, Saadoun I. Influence of culture conditions on cellulase production by Streptomyces sp. (strain J2). Jordan Journal of Biological Sciences , 2008, 1(4): 141–146
40 Xia L M, Shen X L. High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresource Technology , 2004, 91(3): 259–262
doi: 10.1016/S0960-8524(03)00195-0 pmid:14607485
41 Kashyap P, Sabu A, Pandey A, Szakacs G, Soccol C R. Extracellular L-glutaminase production by zygosaccharomyces rouxii under solidstate fermentation. Process Biochemistry , 2002, 38(3): 307–312
doi: 10.1016/S0032-9592(02)00060-2
42 Ramachandran S, Patel A K, Nampoothiri K M, Francis F, Nagy V, Szakacs G, Pandey A. Coconut oil cake—a potential raw material for the production of alpha-amylase. Bioresource Technology , 2004, 93(2): 169–174
doi: 10.1016/j.biortech.2003.10.021 pmid:15051078
43 Ray A K, Bairagi A, Ghosh K S, Sen S K. Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyologica ET Piscatoria , 2007, 37: 47–53
44 Aishwarya V, Ishwarya M, Rajasekaran R, Ranjini R. Optimization of fermentation parameters and purification of cellulase with cellulose (paper) as substrate. Advance Biotech , 2011, 10(09): 40–42
45 Hao X C, Yu X B, Yan Z L. Optimization of the medium for the production of cellulase by the mutant Trichoderma reesei WX-112 using response surface methodology. Food Technology and Biotechnology , 2006, 44(1): 89–94
46 Nitin V, Mukesh C. Vivek. Pea peel waste: a lignocellulosic waste and its utility in cellulase production by Trichoderma reesei under solid state fermentation. Bioresources , 2011, 6(2): 1505–1519
47 Gautam S P, Bundela P S, Pandey A K, Khan J, Awasthi M K, Sarsaiya S. Jamaluddin Khan, Awasthi M K, Sarsaiya S. Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnology Research International , 2011, 2011: 1–8
doi: 10.4061/2011/810425
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed