Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2012, Vol. 6 Issue (2): 152-157   https://doi.org/10.1007/s11705-012-1287-0
  RESEARCH ARTICLE 本期目录
The rpoS deficiency suppresses acetate accumulation in glucose-enriched culture of Escherichia coli under an aerobic condition
The rpoS deficiency suppresses acetate accumulation in glucose-enriched culture of Escherichia coli under an aerobic condition
Prayoga SURYADARMA, Yoshihiro OJIMA, Yuto FUKUDA, Naohiro AKAMATSU, Masahito TAYA()
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
 全文: PDF(175 KB)   HTML
Abstract

The role of Escherichiacoli rpoS on the central carbon metabolism was investigated through analyzing the deficiency of this regulon gene under aerobic and glucose-enriched culture conditions. The experimental results showed that while the wild type cells exhibited an overflow metabolism effect, the rpoS-deleting mutation alleviated this effect with the significant suppression of acetate accumulation under a high glucose condition. This gene deletion also induced the twofold upregulation of gltA and one-tenth downregulation of poxB, respectively. The overflow metabolism effect was confirmed to be recovered by re-introducing rpoS gene into the mutant. These results demonstrated rpoS changed the central carbon metabolism toward acetate overflow through dehydrogenation of pyruvate and reduction of TCA cycle activity.

Key wordsEscherichia coli    rpoS    aerobic and glucose-enriched culture    overflow metabolism
收稿日期: 2011-06-16      出版日期: 2012-06-05
Corresponding Author(s): TAYA Masahito,Email:taya@cheng.es.osaka-u.ac.jp   
 引用本文:   
. The rpoS deficiency suppresses acetate accumulation in glucose-enriched culture of Escherichia coli under an aerobic condition[J]. Frontiers of Chemical Science and Engineering, 2012, 6(2): 152-157.
Prayoga SURYADARMA, Yoshihiro OJIMA, Yuto FUKUDA, Naohiro AKAMATSU, Masahito TAYA. The rpoS deficiency suppresses acetate accumulation in glucose-enriched culture of Escherichia coli under an aerobic condition. Front Chem Sci Eng, 2012, 6(2): 152-157.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-012-1287-0
https://academic.hep.com.cn/fcse/CN/Y2012/V6/I2/152
GeneForward primer (5′ → 3′)Reverse primer (5′ → 3′)
rpoSTTATGGCAATCGTGGTCTGGCGTTCCGGGTCAAACTTCTC
gltAGCATCCAATGGCAGTCATGTTTTCACGGTGACGAGGATTG
poxBGCGTTTCGGTTGTCGTGTTATGCTGGAATAACGCAGCAGT
ackAACGGCACCAGCCACTTCTATGCGGATAGCAGAAACGGAAC
ptaTATCGTGCGTGCGAACTCTTCGACTTCAGCGTCTTTGGTG
oxyRCTGCTGATGCTGGAAGATGGTGCACGGCAGATAAACAACC
soxRTGCTCAGCGTATTGGCATTCGGGACGAAAGCTGTTTCCAC
soxSCATCAGACGCTTGGCGATTAAACCCAGGTCCATTGCGATA
arcAGCGTTGATGTTCCTGACTGGGGGTTGAACGGTTTGGTGAT
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 Hengge-Aronis R. Signal transduction and regulatory mechanisms involved in control of the σS (rpoS) subunit of RNA polymerase. Microbiology and Molecular Biology Reviews , 2002, 66(3): 373–395
doi: 10.1128/MMBR.66.3.373-395.2002 pmid:12208995
2 Eisenstark A, Calcutt M J, Becker-Hapak M, Ivanova A. Role of Escherichia coli rpoS and associated genes in defense against oxidative damage. Free Radical Biology and Medicine , 1996, 21(7): 975–993
doi: 10.1016/S0891-5849(96)00154-2 pmid:8937883
3 González-Flecha B, Demple B. Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. Journal of Biological Chemistry , 1995, 270(23): 13681–13687
doi: 10.1074/jbc.270.23.13681 pmid:7775420
4 Imlay J A, Fridovich I. Assay of metabolic superoxide production in Escherichia coli. Journal of Biological Chemistry , 1991, 266(11): 6957–6965
pmid:1849898
5 Storz G, Imlay J A. Oxidative stress. Current Opinion in Microbiology , 1999, 2(2): 188–194
doi: 10.1016/S1369-5274(99)80033-2 pmid:10322176
6 Chang Y Y, Wang A Y, Cronan J E Jr. Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS(katF) gene. Molecular Microbiology , 1994, 11(6): 1019–1028
doi: 10.1111/j.1365-2958.1994.tb00380.x pmid:8022274
7 Patten C L, Kirchhof M G, Schertzberg M R, Morton R A, Schellhorn H E. Microarray analysis of rpoS-mediated gene expression in Escherichia coli K-12. Molecular Genetics and Genomics , 2004, 272(5): 580–591
doi: 10.1007/s00438-004-1089-2 pmid:15558318
8 Ueguchi C, Misonou N, Mizuno T. Negative control of rpoS expression by phosphoenolpyruvate: Carbohydrate phosphotransferase system in Escherichia coli. Journal of Bacteriology , 2001, 183(2): 520–527
doi: 10.1128/JB.183.2.520-527.2001 pmid:11133945
9 Saka K, Tadenuma M, Nakade S, Tanaka N, Sugawara H, Nishikawa K, Ichiyoshi N, Kitagawa M, Mori H, Ogasawara N, Nishimura A. A complete set of Escherichia coli open reading frames in mobile plasmids facilitating genetic studies. DNA Research , 2005, 12(1): 63–68
doi: 10.1093/dnares/12.1.63 pmid:16106753
10 Cooper C M, Fernstrom G A, Miller S A. Performance of agitated gas-liquid contactors. Industrial and Engineering Chemistry , 1944, 36(6): 504–509
doi: 10.1021/ie50414a005
11 Ojima Y, Kawase D, Nishioka M, Taya M. Functionally undefined gene, yggE, alleviates oxidative stress generated by monoamine oxidase in recombinant Escherichia coli. Biotechnology Letters , 2009, 31(1): 139–145
doi: 10.1007/s10529-008-9835-x pmid:18800193
12 Andersen K B, von Meyenburg K. Are growth rates of Escherichia coli in batch cultures limited by respiration? Journal of Bacteriology , 1980, 144(1): 114–123
pmid:6998942
13 Phue J N, Shiloach J. Impact of dissolved oxygen concentration on acetate accumulation and physiology of E. coli BL21, evaluating transcription levels of key genes at different dissolved oxygen conditions. Metabolic Engineering , 2005, 7(5–6): 353–363
doi: 10.1016/j.ymben.2005.06.003 pmid:16099189
14 Iuchi S, Lin E C. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proceedings of the National Academy of Sciences of the United States of America , 1988, 85(6): 1888–1892
doi: 10.1073/pnas.85.6.1888 pmid:2964639
15 Majewski R A, Domach M M. Simple constrained-optimization view of acetate overflow in Escherichia coli. Biotechnology and Bioengineering , 1990, 7(7): 732–738
doi: 10.1002/bit.260350711
16 Britten R. Extracellular metabolic product of Escherichia coli during rapid growth. Science , 1954, 119: 578–578
17 Han K, Lim H C, Hong J. Acetic acid formation in Escherichia coli fermentation. Biotechnology and Bioengineering , 1992, 39(6): 663–671
doi: 10.1002/bit.260390611 pmid:18600996
18 Vemuri G N, Altman E, Sangurdekar D P, Khodursky A B, Eiteman M A. Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Applied and Environmental Microbiology , 2006, 72(5): 3653–3661
doi: 10.1128/AEM.72.5.3653-3661.2006 pmid:16672514
19 Ingledew W J, Poole R K. The respiratory chains of Escherichia coli. Microbiological Reviews , 1984, 48(3): 222–271
pmid:6387427
20 Gray C T, Wimpenny J W, Mossman M R. Regulation of metabolism in facultative bacteria: II. Effects of aerobiosis, anaerbiosis and nutrition on the formation of Krebs cycle enzymes in Escherchia coli. Biochimica et Biophysica Acta. G, General Subjects , 1966, 1(1): 33–41
doi: 10.1016/0304-4165(66)90149-8
21 Amarasingham C R, Davis B D. Regulation of α-ketoglutarate dehydrogenase formation in Escherichia coli. Journal of Biological Chemistry , 1965, 240(9): 3664–3668
pmid:5319784
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed