Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2012, Vol. 6 Issue (3): 246-252   https://doi.org/10.1007/s11705-012-1299-9
  RESEARCH ARTICLE 本期目录
Nanostructured hollow spheres of hydroxyapatite: preparation and potential application in drug delivery
Nanostructured hollow spheres of hydroxyapatite: preparation and potential application in drug delivery
Xiaojing ZHANG1,2, Weixin ZHANG1,2(), Zeheng YANG1,2, Zhao ZHANG1,2
1. School of Chemical Engineering, Hefei University of Technology, Hefei 230009, China; 2. Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei 230009, China
 全文: PDF(304 KB)   HTML
Abstract

A solvothermal method has been successfully used to prepare nanostructured hydroxyapatite (HA) hollow spheres with average diameters of about 500 nm and shell thicknesses of about 100 nm in a glycerin/water mixed solvent. Transmission electron microscopy (TEM) and field-emission scanning electron microscopy (FESEM) images show that the shells of the HA hollow spheres are actually composed of nanosheets with thicknesses of about 10 nm. By tuning the glycerin/water volume ratio, two other kinds of HA solid spheres with average diameters of about 6 or 20 μm were assembled from nanoflakes. The properties of the different kinds of spheres as drug delivery carriers were evaluated. Ibuprofen (IBU) was chosen as the model drug to load into the HA samples. The nanostructured HA samples showed a slow and sustained release of IBU. The HA hollow spheres exhibited a higher drug loading capacity and more favorable release properties than the HA solid spheres and thus are very promising for controlled drug release applications.

Key wordshydroxyapatite    hollow spheres    synthesis    drug release
收稿日期: 2011-11-14      出版日期: 2012-09-05
Corresponding Author(s): ZHANG Weixin,Email:wxzhang@hfut.edu.cn   
 引用本文:   
. Nanostructured hollow spheres of hydroxyapatite: preparation and potential application in drug delivery[J]. Frontiers of Chemical Science and Engineering, 2012, 6(3): 246-252.
Xiaojing ZHANG, Weixin ZHANG, Zeheng YANG, Zhao ZHANG. Nanostructured hollow spheres of hydroxyapatite: preparation and potential application in drug delivery. Front Chem Sci Eng, 2012, 6(3): 246-252.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-012-1299-9
https://academic.hep.com.cn/fcse/CN/Y2012/V6/I3/246
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 Ma M Y, Zhu Y J, Li L, Cao S W. Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate: preparation and application in drug delivery. Journal of Materials Chemistry , 2008, 18(23): 2722–2727
doi: 10.1039/b800389k
2 Uskokovi? V, Uskokovi? D P. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. Journal of Biomedical Materials Research Part B: Applied Biomaterials , 2011, 96(1): 152–191
doi: 10.1002/jbm.b.31746 pmid:21061364
3 Zhang H G, Zhu Q S, Wang Y. Morphologically controlled synthesis of hydroxyapatite with partial substitution of fluorine. Chemistry of Materials , 2005, 17(23): 5824–5830
doi: 10.1021/cm051357a
4 Tseng Y H, Mou C Y, Chan J C. Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. Journal of the American Chemical Society , 2006, 128(21): 6909–6918
doi: 10.1021/ja060336u pmid:16719471
5 Cao X Y, Wen F, Bian W, Cao Y, Pang S J, Zhang W K. Preparation and comparison study of hydroxyapatite and Eu-hydroxyapatite. Frontiers of Materials Science in China , 2009, 3(3): 255–258
doi: 10.1007/s11706-009-0043-y
6 Jagadeesan D, Deepak C, Siva K, Inamdar M S, Eswaramoorthy M. Carbon Spheres Assisted Synthesis of Porous Bioactive Glass Containing Hydroxycarbonate Apatite Nanocrystals: a Material with High in Vitro Bioactivity. Journal of Physical Chemistry C , 2008, 112(19): 7379–7384
doi: 10.1021/jp800850m
7 Zhu D M, Wang F, Gao C L, Xu Z. Construction of PS/PNIPAM core-shell particles and hollow spheres by using hydrophobic interaction and thermosensitive phase separation. Frontiers of Chemical Engineering in China , 2008, 2(3): 253–256
doi: 10.1007/s11705-008-0049-5
8 L?chelt U, Wagner E. Invading target cells: multifunctional polymer conjugates as therapeutic nucleic acid carriers. Frontiers of Chemical Science and Engineering β, 2011, 5(3): 275–286
doi: 10.1007/s11705-011-1203-z
9 Almirall A, Larrecq G, Delgado J A, Martínez S, Planell J A, Ginebra M P. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials , 2004, 25(17): 3671–3680
doi: 10.1016/j.biomaterials.2003.10.066 pmid:15020142
10 Ma M G, Zhu J F. Solvothermal synthesis and characterization of hierarchically nanostructured hydroxyapatite hollow spheres. European Journal of Inorganic Chemistry , 2009, 36: 5522–5526
11 Sun R X, Lu Y P, Chen K Z. Preparation and characterization of hollow hydroxyapatite microspheres by spray drying method. Materials Science and Engineering: C , 2009, 29(4): 1088–1092
doi: 10.1016/j.msec.2008.08.010
12 Shum H C, Bandyopadhyay A, Bose S, Weitz D A. Double emulsion droplets as microreactors for synthesis of mesoporous. Chemistry of Materials , 2009, 21(22): 5548–5555
doi: 10.1021/cm9028935
13 Sun R X, Chen K Z, Lu Y P. Fabrication and dissolution behavior of hollow hydroxyapatite microspheres intended for controlled drug release. Materials Research Bulletin , 2009, 44(10): 1939–1942
doi: 10.1016/j.materresbull.2009.06.015
14 Cheng X K, He Q J, Li J Q, Huang Z L, Chi R A. Control of pore size of the bubble-template porous carbonated hydroxyapatite microsphere by adjustable pressure. Crystal Growth & Design , 2009, 9(6): 2770–2775
doi: 10.1021/cg801421a
15 Cheng X K, Huang Z L, Li J Q, Liu Y, Chen C L, Chi R A, Hu Y H. Self-assembled growth and pore size control of the bubble-template porous carbonated hydroxyapatite microsphere. Crystal Growth & Design , 2010, 10(3): 1180–1188
doi: 10.1021/cg901088c
16 Jiang H Z, Stupp S I. Dip-pen patterning and surface assembly of peptide amphiphiles. Langmuir , 2005, 21(12): 5242–5246
doi: 10.1021/la0501785 pmid:15924443
17 Zhang W X, Yang Z H, Liu Y, Tang S P, Han X Z, Chen M. Controlled synthesis of Mn3O4 nanocrystallites and MnOOH nanorods by a solvothermal method. Journal of Crystal Growth , 2004, 263(1-4): 394–399
doi: 10.1016/j.jcrysgro.2003.11.099
18 Steiner Z, Rapaport H, Oren Y, Kasher R. Effect of surface-exposed chemical groups on calcium-phosphate mineralization in water-treatment systems. Environmental Science & Technology , 2010, 44(20): 7937–7943
doi: 10.1021/es101773t pmid:20873736
19 Yang Z H, Zhao M, Florin N H, Harris A T. Synthesis and characterization of CaO nanopods for high temperature CO2 capture. Industrial & Engineering Chemistry Research , 2009, 48(24): 10765–10770
doi: 10.1021/ie901137s
20 Mizushima Y, Ikoma T, Tanaka J, Hoshi K, Ishihara T, Ogawa Y, Ueno A. Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. Journal of Controlled Release , 2006, 110(2): 260–265
doi: 10.1016/j.jconrel.2005.09.051 pmid:16313993
21 Ito M, Hidaka Y, Nakajima M, Yagasaki H, Kafrawy A H. Effect of hydroxyapatite content on physical properties and connective tissue reactions to a chitosan-hydroxyapatite composite membrane. Journal of Biomedical Materials Research , 1999, 45(3): 204–208
doi: 10.1002/(SICI)1097-4636(19990605)45:3<204::AID-JBM7>3.0.CO;2-4 pmid:10397977
22 Wang H X, Guan S K, Wang Y S, Liu H J, Wang H T, Wang L G, Ren C X, Zhu S J, Chen K S. In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application. Colloids and Surfaces. B, Biointerfaces , 2011, 88(1): 254–259
doi: 10.1016/j.colsurfb.2011.06.040 pmid:21783346
23 Aoki H, Aoki H, Kutsuno T, Li W, Niwa M. An in vivo study on the reaction of hydroxyapatite-sol injected into blood. Journal of Materials Science. Materials in Medicine , 2000, 11(2): 67–72
doi: 10.1023/A:1008993814033 pmid:15348049
24 Zhang C M, Cheng Z Y, Yang P P, Xu Z H, Peng C, Li G G, Lin J. Architectures of strontium hydroxyapatite microspheres: solvothermal synthesis and luminescence properties. Langmuir , 2009, 25(23): 13591–13598
doi: 10.1021/la9019684 pmid:19670837
25 Yao A H, Ai F R, Liu X, Wang D P, Huang W H, Xu W. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature. Materials Research Bulletin , 2010, 45(1): 25–28
doi: 10.1016/j.materresbull.2009.09.009
26 Pon-On W, Meejoo S, Tang I M. Formation of hydroxyapatite crystallites using organic template of polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS). Materials Chemistry and Physics , 2008, 112(2): 453–460
doi: 10.1016/j.matchemphys.2008.05.082
27 Porter A, Patel N, Brooks R, Best S, Rushton N, Bonfield W. Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants. Journal of Materials Science. Materials in Medicine , 2005, 16(10): 899–907
doi: 10.1007/s10856-005-4424-1 pmid:16167098
28 Wu Y J, Bose S. Nanocrystalline hydroxyapatite: micelle templated synthesis and characterization. Langmuir , 2005, 21(8): 3232–3234
doi: 10.1021/la046754z pmid:15807558
29 Wang A J, Lu Y P, Zhu R F, Li S T, Xiao G Y, Zhao G F, Xu W H. Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres. Journal of Journal of Biomedical MaterialsResearch. Part A , 2008, 87(2): 557–562
pmid:18306315
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed