Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (1): 43-48   https://doi.org/10.1007/s11705-013-1309-6
  RESEARCH ARTICLE 本期目录
Importance of emulsions in crystallization—applications for fat crystallization
Importance of emulsions in crystallization—applications for fat crystallization
Sandra PETERSEN(), K. CHALEEPA, Joachim ULRICH
Center for Engineering Science, Thermal Process Engineering, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
 全文: PDF(312 KB)   HTML
Abstract

Emulsions and crystallization are two independent research topics which normally do not overlap although a combination of the two could be applicable to many areas. Here, the importance of emulsions in the field of fat crystallization is described. Three applications with industrial relevance were chosen for investigation: fat fractionation, the solidification of phase change materials and solid lipid nanoparticles. For fat fractionation and phase change materials, emulsification can be applied as a tool to improve the fat crystallization process, and thus the product quality of the crystallized fat. Furthermore, the use of emulsification creates new application fields such as solid lipid nanoparticles in the area of fat crystallization.

Key wordsemulsion    fat crystallization    phase change material    emulsion fractionation    emulsion solidification
收稿日期: 2012-09-27      出版日期: 2013-03-05
Corresponding Author(s): PETERSEN Sandra,Email:sandra.petersen@iw.uni-halle.de   
 引用本文:   
. Importance of emulsions in crystallization—applications for fat crystallization[J]. Frontiers of Chemical Science and Engineering, 2013, 7(1): 43-48.
Sandra PETERSEN, K. CHALEEPA, Joachim ULRICH. Importance of emulsions in crystallization—applications for fat crystallization. Front Chem Sci Eng, 2013, 7(1): 43-48.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1309-6
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I1/43
Fig.1  
Fig.1  
Fig.2  
Fig.2  
Fig.3  
Fig.3  
Rotational speed /(r?min-1)Mean droplet size/μm(number-based)
800012.32
950010.15
135009.23
205009.21
Tab.1  
Fig.4  
Fig.4  
Fig.5  
Fig.5  
1 Zaliha O, Chong C L, Cheow C S, Norizzah A R, Kellens M J. Crystallization properties of palm oil by dry fractionation. Food Chemistry , 2004, 86(2): 245–250
doi: 10.1016/j.foodchem.2003.09.032
2 Arnaud E, Relkin P, Pina M, Collignan A. Characterisation of chicken fat dry fractionation at the pilot scale. European Journal of Lipid Science and Technology , 2004, 106(9): 591–598
doi: 10.1002/ejlt.200400946
3 Chaleepa K, Szepes A, Ulrich J. Dry fractionation of coconut oil by melt crystallization. ChERD , 2010, 88(9): 1217–1222
4 Kellens M, Gibon V, Hendrix M, de Greyt W. Palm oil fractionation. European Journal of Lipid Science and Technology , 2007, 109(4): 336–349
doi: 10.1002/ejlt.200600309
5 Chaleepa K, Ulrich J. Emulsion fractionation of coconut oil: a new fractionation technology. Chemical Engineering & Technology , 2011, 34(4): 557–562
doi: 10.1002/ceat.201000485
6 Tiedtke M. Die Fraktionierung von Milchfett- Ein neues Einsatzgebiet für die Schichtkristallisation. Dissertation for the Doctoral Degree . Aachen: University of Bremen, 1997
7 Ulrich J, Neumann M. Purification by solid layer melt crystallization. Journal of Thermal Analysis , 1997, 48(3): 527–533
doi: 10.1007/BF01979499
8 Chaleepa K. A new concept in layer-based fractional crystallization processes. Dissertation for the Doctoral Degree . Halle: Martin Luther University Halle-Wittenberg, 2010, p-p?
9 Velraj R, Seeniraj R V, Hafner B, Faber C, Schwarzer K. Heat transfer enhancement in a latent heat storage system. Solar Energy , 1999, 65(3): 171–180
doi: 10.1016/S0038-092X(98)00128-5
10 Nakao Y, Hishida M, Tanaka G, Shiina Y. Solidification characteristics of rising immiscible oil droplets in coolant. International Journal of Heat and Mass Transfer , 2004, 47(24): 5339–5349
doi: 10.1016/j.ijheatmasstransfer.2004.05.036
11 Iqbal J, Ulrich J. Spherical-particle generation by phase change materials: Near-monosize particles from emulsions. Chemical Engineering & Technology , 2010, 33(6): 1011–1014
12 Iqbal J, Petersen S, Ulrich J. Emulsion Solidification: Influence of the Droplet Size of the Water-in-Oil Emulsion on the Generated Particle Size. Chemical Engineering & Technology , 2011, 34(4): 530–534
doi: 10.1002/ceat.201000449
13 Weiss J, Decker E, McClements D, Kristbergsson K, Helgason T, Awad T. Solid Lipid Nanoparticles as Delivery Systems for Bioactive Food Components. In: Food Biophysics, Volume 3 . New York: Springer, 2008, 146–154
14 Müller R H, M?der K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics , 2000, 50(1): 161–177
doi: 10.1016/S0939-6411(00)00087-4
15 Jenning V, Lippacher A, Gohla S H. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. Journal of Microencapsulation , 2002, 19(1): 1–10
doi: 10.1080/713817583
16 Bunjes H, Koch M H J, Westesen K. Influence of emulsifiers on the crystallization of solid lipid nanoparticles. Journal of Pharmaceutical Sciences , 2003, 92(7): 1509–1520
doi: 10.1002/jps.10413
17 Petersen S, Ulrich J. Effectiveness of polyoxyethylene nonionic emulsifiers in emulsification processes using disc systems. Chemical Engineering & Technology , 2011, 34(11): 1869–1875
doi: 10.1002/ceat.201100257
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed