Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (2): 170-176   https://doi.org/10.1007/s11705-013-1322-9
  RESEARCH ARTICLE 本期目录
Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation
Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation
Aihua KONG1, Yanyu WEI1, Yonghong LI1,2()
1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China; 2. National Engineering Research Center for Distillation Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(208 KB)   HTML
Abstract

A high-performance Ni/ZnO adsorbent was prepared by homogeneous precipitation using urea hydrolysis and characterized by N2 adsorption-desorption, X-ray diffraction (XRD), and scanning electron microscope (SEM). The adsorbent was applied to the deep desulfurization of gasoline and showed a high breakthrough sulfur capacity and a remarkably high volume hourly space velocity. The effects of coexisting olefins in gasoline as well as adsorptive conditions on the adsorptive performance were examined. It was found that olefins in gasoline had a slightly inhibiting effect on the desulfurization performance of the adsorbent. The optimum conditions were 673 K, 1.0 Mpa with a volume hourly space velocity of 60 h-1. Under the optimum conditions, ultralow sulfur gasoline could be produced and the breakthrough sulfur capacity of the adsorbent was 360 mg-s/g-sorb for the model gasoline.

Key wordsnickel    reactive adsorption    desulfurization    thiophene
收稿日期: 2012-08-08      出版日期: 2013-06-05
Corresponding Author(s): LI Yonghong,Email:yhli@tju.edu.cn   
 引用本文:   
. Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation[J]. Frontiers of Chemical Science and Engineering, 2013, 7(2): 170-176.
Aihua KONG, Yanyu WEI, Yonghong LI. Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation. Front Chem Sci Eng, 2013, 7(2): 170-176.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1322-9
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I2/170
Fig.1  
SampleSBET /(m2·g-1)Vp /(cm3·g-1)
Calcined adsorbent270.13
Regenerated adsorbent270.13
Reduced adsorbent280.14
Sulfurized adsorbent140.05
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 Ma X L, Zhou A, Song C S. A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption. Catalysis Today , 2007, 123(1-4): 276–284
doi: 10.1016/j.cattod.2007.02.036
2 Ito E, van Veen J A R. On novel processes for removing sulphur from refinery streams. Catalysis Today , 2006, 116(4): 446–460
doi: 10.1016/j.cattod.2006.06.040
3 Parkinson G. Diesel desulfurization puts refiners in a quandary. Chemical Engineering , 2001, 108(2): 37–42
4 Song C S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel and jet fuel. Catalysis Today , 2003, 86(1-4): 211–263
doi: 10.1016/S0920-5861(03)00412-7
5 Yang R T, Hernandez-Maldonado A J, Yang F H. Desulfurization of transportation fuels with zeolites under ambient conditions. Science , 2003, 301(5629): 79–81
doi: 10.1126/science.1085088
6 Babich I V, Moulijn J A. Science and technology of novel process for deep desulfurization of oil refinery streams: a review. Fuel , 2003, 82(6): 607–631
doi: 10.1016/S0016-2361(02)00324-1
7 Bezverkhyy I, Ryzhikov A, Gadacz G, Bellat J P. Kinetics of thiophene reactive adsorption on Ni/SiO2 and Ni/ZnO. Catalysis Today , 2008, 130(1): 199–205
doi: 10.1016/j.cattod.2007.06.038
8 Khare GPUS. Patent, 6274533 , 2001-08-14
9 Shi Y H. The desulfurization in petroleum refining. Beijing: Petrochemical Press , 2009, 187–188 (in Chinese)
10 Fan J, Wang G, Sun Y, Xu C, Zhou H, Zhou G, Gao J. Research on reactive adsorption desulfurization over Ni/ZnO- SiO2-Al2O3 adsorbent in a fixed-fluidized bed reactor. Industrial & Engineering Chemistry Research , 2010, 49(18): 8450–8460
doi: 10.1021/ie100923v
11 Xu W Q, Xiong C Q, Zhou G L, Zhou H J. Removal of sulfur from FCC gasoline by using Ni/ZnO as adsorbent. Acta Petrolei Sinica , 2008, 24(6): 739–743 (Petroleum Processing Section)
12 Tawara K, Nishimura T, Iwanami H, Nishimoto T, Hasuike T. New hydrodesulfurization catalyst for petroleum-fed fuel cell vehicles and cogenerations. Industrial & Engineering Chemistry Research , 2001, 40(10): 2367–2370
doi: 10.1021/ie000453c
13 Yan B, Li L L, Shao C H. Studies and progress in preparation methods of nanometer ZnO desulfurizer used at ambient temperature. Journal of Natural Science of Heilongjiang University , 2006, 23(2): 163–167 (in Chinese)
14 Soler-Illia G J de A A, Candal R J, Regazzoni A E, Blesa M A. Synthesis of mixed copper-zinc basic carbonates and Zn-doped tenorite by homogeneous alkalinization. Chemistry of Materials , 1997, 9(1): 184–191
doi: 10.1021/cm9602813
15 Candal R J, Regazzoni A E, Blesa M A. Precipitation of copper (II) hydrous oxides and copper (II) basic salts. Journal of Materials Chemistry , 1992, 2(6): 657–661
doi: 10.1039/jm9920200657
16 Huey-Ing C, Hung Y C. Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2004, 242(1-3): 61–69
doi: 10.1016/j.colsurfa.2004.04.056
17 Buchanan J S, Nicholas M E. Analysis of olefinic gasolines with multidimensional gas chromatography. Journal of Chromatographic Science , 1994, 32(5): 199–203
18 Ryzhikov A, Bezverkhyy I, Bellat J P. Reactive adsorption of thiophene on Ni/ZnO: role of hydrogen pretreatment and nature of the rate determining step. Applied Catalysis B: Environmental , 2008, 84(3-4): 766–772
doi: 10.1016/j.apcatb.2008.06.009
20 Yang J, Shi Q J, Li B Y. Properties of Ni supported on ZnO-based mixed oxides for hydrodesulfurization of thiophene. Journal of Nanchang University (Natural Science) , 2009, 33(1): 42–45 (in Chinese)
21 Fan J X, Wang G, Sun Y, Xu C M, Gao J S. Research on reactive adsorption desulfurization over of Ni/ZnO-SiO2-Al2O3 adsorbent in a Fixedfixed-fluidized bed reactor. Industrial & Engineering Chemistry Research , 2010, 49(18): 8457–8460
doi: 10.1021/ie100923v
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed