Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (2): 145-153   https://doi.org/10.1007/s11705-013-1327-4
  RESEARCH ARTICLE 本期目录
H2 production by ethanol decomposition with a gliding arc discharge plasma reactor
H2 production by ethanol decomposition with a gliding arc discharge plasma reactor
Baowei WANG(), Wenjie GE, Yijun Lü, Wenjuan YAN
Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(219 KB)   HTML
Abstract

A gliding arc discharge (GRD) reactor was used to decompose ethanol into primarily H2 and CO with small amounts of CH4, C2H2, C2H4, and C2H6. The ethanol concentration, electrode gap, input voltage and Ar flow rate all affected the conversion of ethanol with results ranging from 40.7% to 58.0%. Interestingly, for all experimental conditions the SH2/SCO selectivity ratio was quite stable at around 1.03. The mechanism for the decomposition of ethanol is also described.

Key wordsgliding arc discharge    ethanol    hydrogen    decomposition    plasma
收稿日期: 2012-11-30      出版日期: 2013-06-05
Corresponding Author(s): WANG Baowei,Email:wangbw@tju.edu.cn   
 引用本文:   
. H2 production by ethanol decomposition with a gliding arc discharge plasma reactor[J]. Frontiers of Chemical Science and Engineering, 2013, 7(2): 145-153.
Baowei WANG, Wenjie GE, Yijun Lü, Wenjuan YAN. H2 production by ethanol decomposition with a gliding arc discharge plasma reactor. Front Chem Sci Eng, 2013, 7(2): 145-153.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1327-4
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I2/145
Fig.1  
MeasurementInstrumentmeasurement rangePrecision
Ar gas flowMass flowmeter Jianzhong D07-7A/ZMM0-200 mL/min±0.1 mL
Ethanol massAnalytical balance Mettler-Toledo Al2040-210 g±0.0001 g
Discharge voltageHigh-voltage probe Tektronix P6015A1.5-20 kV±0.01 V
Discharge currentCurrent probe Tektronix A6220-10 A±0.01 mA
Tab.1  
Fig.2  
Fig.3  
Ar flow rate/(mL?min–1)SelectivitySH2/SCO
H2/%CO/%CH4/%C2H2/C2H4 /%C2H6/%
43.342.341.212.834.87.71.03
52.043.241.813.335.88.71.03
60.642.840.812.235.29.31.05
69.341.740.211.634.29.61.04
Tab.2  
Fig.4  
Electrode gap/mmEthanol conversion/%Hydrogen yield/%Rate of generation/(mL?min–1)
H2COhydrocarbons
2.047.920.56.94.43.4
3.050.822.47.34.63.5
3.552.523.47.74.93.6
4.056.126.58.75.33.8
Tab.3  
Fig.5  
Fig.6  
ReactorDBDMW surface-waveArc dischargeLNADGRD in this work
MethodSRSRPOX+ SRPOX+ SRDD
Flow rate g/s(2.37 – 5.8) × 10–30.015-0.0450.250.1-0.351.89 × 10–4
Ethanol conversion/%20-40100<6550-9058
Hydrogen yield/%5-18-35-404028
Energy efficiency/%--<35288
Input power/W4060–801200100-30014
Reference[23][24][25][26]-
Tab.4  
1 Joensen F, Jens R, Nielsen R. Conversion of hydrocarbons and alcohols for fuel cells. Journal of Power Sources , 2002, 105(2): 195-201
doi: 10.1016/S0378-7753(01)00939-9
2 Navarro R, Pe?a M, Fierro J. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chemical Reviews , 2007, 107(10): 3952-3991
doi: 10.1021/cr0501994
3 Haryanto A, Fernando S, Murali N, Adhikari S. Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy & Fuels , 2005, 19(5): 2098-2106
doi: 10.1021/ef0500538
4 Goltsov V, Veziroglu T, Goltsova L. Hydrogen civilization of the future—A new conception of the IAHE. International Journal of Hydrogen Energy , 2006, 31(2): 153-159
doi: 10.1016/j.ijhydene.2005.04.045
5 Meng N, Michael L, Sumathy K, Dennis L. Potential of renewable hydrogen production for energy supply in HongKong. International Journal of Hydrogen Energy , 2006, 31(10): 1401-1412
doi: 10.1016/j.ijhydene.2005.11.005
6 Meng N, Dennis L, Michael L, Sumathy K. An overview of hydrogen production from biomass. Fuel Processing Technology , 2006, 87(5): 461-472
doi: 10.1016/j.fuproc.2005.11.003
7 Meng N, Dennis L, Michael L. A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy , 2007, 32(15): 3238-3247
doi: 10.1016/j.ijhydene.2007.04.038
8 Li J, Kazakov A, Dryer F. Experimental and numerical studies of ethanol decomposition reactions. Journal of Physical Chemistry A , 2004, 108(38): 7671-7680
doi: 10.1021/jp0480302
9 Diagne C, Idriss H, Kiennemann A. Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts. Catalysis Communications , 2002, 3(12): 565-571
doi: 10.1016/S1566-7367(02)00226-1
10 Toshiya N, Tomoaki M, Hiroyoshi K, Kazunori U, Yasuyuki M, Shen W, Seiichiro I. Catalytic steam reforming of ethanol to produce hydrogen and acetone. Applied Catalysis A, General , 2005, 279(1-2): 273-277
doi: 10.1016/j.apcata.2004.10.035
11 Fishtik I, Alexander A, Datta R, Geana D. A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions. International Journal of Hydrogen Energy , 2000, 25(1): 31-45
doi: 10.1016/S0360-3199(99)00004-X
12 Fierro V, Klouz V, Akdim O, Mirodatos C. Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications. Catalysis Today , 2002, 75(1-4): 141-144
doi: 10.1016/S0920-5861(02)00056-1
13 Cavallaro S, Chiodo V, Vita A, Freni S. Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst. Journal of Power Sources , 2003, 123(1): 10-16
doi: 10.1016/S0378-7753(03)00437-3
14 Matsumura Y, Nakamori T. Steam reforming of methane over nickel catalysts at low reaction temperature. Applied Catalysis A, General , 2004, 258(1): 107-114
doi: 10.1016/j.apcata.2003.08.009
15 Petitpasa G, Rollier J, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L. A comparative study of non-thermal plasma assisted reforming technologies. International Journal of Hydrogen Energy , 2007, 32(14): 2848-2867
doi: 10.1016/j.ijhydene.2007.03.026
16 Aubry O, Met C, Khacef A, Cormier J. On the use of a non-thermal plasma reactor for ethanol steam reforming. Chemical Engineering Journal , 2005, 106(3): 241-247
doi: 10.1016/j.cej.2004.12.003
17 Zheng B, Yan J, Li X, Chi Y, Cen K. Plasma assisted dry methane reforming using gliding arc gas discharge: effect of feed gases proportion. International Journal of Hydrogen Energy , 2008, 33(20): 5545-5553
doi: 10.1016/j.ijhydene.2008.05.101
18 Yang Y, Lee B, Chun Y. Characteristics of methane reforming using gliding arc reactor. Energy , 2009, 34(2): 172-177
doi: 10.1016/j.energy.2008.11.006
19 Rueangjitt N, Sreethawonga T, Chavadej S, Sekiguchi H. Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: effects of input power, reactor thickness, and catalyst existence. Chemical Engineering Journal , 2009, 155(3): 874-880
doi: 10.1016/j.cej.2009.10.009
20 Burlica R, Shih K, Hnatiuc B, Locke B. Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions. Industrial & Engineering Chemistry Research , 2011, 50(15): 9466-9470
doi: 10.1021/ie101920n
21 Yanguas-Gil A, Hueso J, Cotrino J, Caballero A, González-Elipe A. Reforming of ethanol in a microwave surface-wave plasma discharge. Applied Physics Letters , 2004, 85(18): 4004-4006
doi: 10.1063/1.1808875
22 Tanabe S, Matsuguma H, Okitsu K, Matsumoto H. Generation of hydrogen from methanol in a dielectric-barrier discharge-plasma system. Chemistry Letters , 2000, 29(10): 1116-1117
doi: 10.1246/cl.2000.1116
23 Wang B, Lv Y, Zhang X, Hu S. Hydrogen generation from steam reforming of ethanol in dielectric barrier discharge. Journal of Natural Gas Chemistry , 2011, 20(2): 151-154
doi: 10.1016/S1003-9953(10)60160-0
24 Henriques J, Bundaleska N, Tatarova E, Dias F, Ferreira C. Microwave plasma torches driven by surface wave applied for hydrogen production. International Journal of Hydrogen Energy , 2011, 36(1): 345-354
doi: 10.1016/j.ijhydene.2010.09.101
25 Petitpas G, José G, Adeline D, Laurent F. Ethanol and E85 reforming assisted by a non-thermal arc discharge. Energy & Fuels , 2011, 24(4): 2607-2613
doi: 10.1021/ef100022r
26 Du C, Li H, Zhang L, Wang J, Huang D, Xiao M, Cai J, Chen Y, Yan H, Xiong Y, Xiong Y. Hydrogen production by steam-oxidative reforming of bio-ethanol assisted by Laval nozzle arc discharge. International Journal of Hydrogen Energy , 2012, 37(10): 8318-8329
doi: 10.1016/j.ijhydene.2012.02.166
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed