Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (2): 218-225   https://doi.org/10.1007/s11705-013-1330-9
  RESEARCH ARTICLE 本期目录
Condensation of phenol and acetone on a modified macroreticular ion exchange resin catalyst
Condensation of phenol and acetone on a modified macroreticular ion exchange resin catalyst
Baohe WANG, Lili WANG, Jing ZHU(), Shuang CHEN, Hao SUN
Key Laboratory for Green Chemical Technology of Ministry of Education, Research and Development Center of Petrochemical Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(216 KB)   HTML
Abstract

Macroreticular ion exchange resin catalysts were prepared by suspension polymerization, and then modified by alkylmercaptoamines. The modified catalysts were characterized by N2 adsorption/desorption measurements, scanning electron microscopy and differential scanning calorimetry. Key factors such as the mercaptan content, the degree of crosslinking and the structures of the promoters were investigated for the synthesis of Bisphenol A (BPA). At optimal conditions, the macroreticular ion exchange resin catalysts modified by alkylmercaptoamines showed high catalytic activity and selectivity for BPA synthesis.

Key wordsmacroreticular ion exchange resin    catalysts    suspension polymerization    Bisphenol A
收稿日期: 2012-12-30      出版日期: 2013-06-05
Corresponding Author(s): ZHU Jing,Email:cj_zhu1975@tju.edu.cn   
 引用本文:   
. Condensation of phenol and acetone on a modified macroreticular ion exchange resin catalyst[J]. Frontiers of Chemical Science and Engineering, 2013, 7(2): 218-225.
Baohe WANG, Lili WANG, Jing ZHU, Shuang CHEN, Hao SUN. Condensation of phenol and acetone on a modified macroreticular ion exchange resin catalyst. Front Chem Sci Eng, 2013, 7(2): 218-225.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1330-9
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I2/218
SampleCrosslinking degree/%Exchange capacity /(meq/g)Average pore diameter/?SBET/(m2?g-1)Pore volume/(cm3?g-1)Range of pore diameter/?
R145.637036.70.45100-1000
N-R1R2484.35.136426335.260.40.430.3290-98087-890
N-R2R3N-R3R481010124.05.24.44.725723021617558.482.780.498.80.300.400.370.3684-86070-73064-71058-600
N-R4R512163. 74.31708285.81170.340.4152-57020-200
N-R5163.4781130.3916-180
Tab.1  
Fig.1  
Fig.2  
CatalystPromoterSBPA /%CAcetone /%
R2-80.625.7
NTBA98.196.5
A-16-80.725.5
NTBA98.996.6
CT-124-80.630.8
NTBA92.980.9
Tab.2  
Fig.3  
Fig.4  
NumberModifierSBPA /%CAcetone /%
0-80.625.7
1H2NCH2CH2SH95.753.8
2HN(CH2CH2SH)296.490.7
3(CH3)2NCH2CH2CH2SH97.193.1
4(CH3)3CN(CH2CH2SH)298.196.5
Tab.3  
Fig.5  
1 Orjuela A, Yanez A J, Santhanakrishnan A, Liraa C T, Miller D J. Kinetics of mixed succinic acid/acetic acid esterification with Amberlyst 70 ion exchange resin as catalyst. Chemical Engineering Journal , 2012, 188: 98–107
doi: 10.1016/j.cej.2012.01.103
2 Dosuna-Rodríguez I, Gaigneaux E M. Glycerol acetylation catalysed by ion exchange resins. Catalysis Today , 2012, 195(1): 14–21
doi: 10.1016/j.cattod.2012.04.031
3 Mahajan Y S, Kamath R S, Kumbhar P S, Mahajani S M. Self-Condensation of Cyclohexanone over Ion Exchange Resin Catalysts: Kinetics and Selectivity Aspects. Industrial & Engineering Chemistry Research , 2008, 47(1): 25–33
doi: 10.1021/ie061275b
4 Choi S B, Won S W, Yun Y S. Use of ion-exchange resins for the adsorption of the cationic part of ionic liquid, 1-ethyl-3-methylimidazolium. Chemical Engineering Journal , 2013, 214: 78–82
doi: 10.1016/j.cej.2012.10.035
5 Kawanishi Y, Suzuki Y, Miyazawa A. Efficient 16O-18O isotope exchange reactions of carbonyl compounds in aqueous organic solvents catalyzed by acidic resin. Chemical Engineering Journal , 2011, 167(2-3): 531–535
doi: 10.1016/j.cej.2010.10.052
6 Singh P. Preparation of bisphenol-A over zeolite catalysts. Catalysis Letters , 1992, 16(4): 431–435
doi: 10.1007/BF00764901
7 Yadav G D, Kirthivasan N. Synthesis of bisphenol-A: comparison of efficacy of ion exchange resin catalysts vis-a-vis heteropolyacid supported on clay and kinetic modelling. Applied Catalysis A, General , 1997, 154(1-2): 29–53
doi: 10.1016/S0926-860X(96)00364-X
8 Krystyna K, Nowi`nska W. Synthesis of Bisphenol-A over heteropoly compounds encapsulated into mesoporous molecular sieves. Applied Catalysis A, General , 2000, 203(1): 91–100
doi: 10.1016/S0926-860X(00)00469-5
9 Jia L J, Hua C Y, Dai L Y, Shan Y K. Synthesis of bisphenol A catalyzed by Et3NHCl- AlCl3 ionic liquids. Reaction Kinetics and Catalysis Letters , 2003, 81(2): 235–240
doi: 10.1023/B:REAC.0000019428.51674.93
10 Das D, Lee J F, Cheng S. Selective synthesis of Bisphenol-A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups. Journal of Catalysis , 2004, 223(1): 152–160
doi: 10.1016/j.jcat.2004.01.025
11 Hou L J, Cai Q H, Lu B, Li X, Xiao X, Han Y, Cui S. A novel solid acid for synthesis of bisphenol A. Catalysis Letters , 2006, 111(3-4): 153–157
doi: 10.1007/s10562-006-0155-2
12 Chen C C, Cheng S, Jang L Y. Dual-functionalized large pore mesoporous silica as an efficient catalyst for bisphenol-A synthesis. Microporous and Mesoporous Materials , 2008, 109(1-3): 258–270
doi: 10.1016/j.micromeso.2007.04.053
13 Shimizu K, Kontani S, Yamada S, Takahashi G, Nishiyama T, Satsuma A. Design of active centers for bisphenol-A synthesis by organic-inorganic dual modification of heteropolyacid. Applied Catalysis A, General , 2010, 380(1-3): 33–39
doi: 10.1016/j.apcata.2010.03.025
14 Dooleya K M, Williamsa J A, Gates B C, Albright R L. Sulfonated poly (styrene- divinylbenzene) catalysts: II. Diffusion and the influence of macroporous polymer physical properties on the rate of reesterification. Journal of Catalysis , 1982, 74(2): 361–372
doi: 10.1016/0021-9517(82)90041-0
15 Ihm S K, Chung M J, Park K Y. Activity difference between the internal and external sulfonic groups of macroreticular ion-exchange resin catalysts in isobutylene hydration. Industrial & Engineering Chemistry Research , 1988, 27(1): 41–45
doi: 10.1021/ie00073a009
16 Patel D, Saha B. Heterogeneous kinetics and residue curve map (RCM) determination for synthesis of n-hexyl acetate using ion-exchange resins as catalysts. Industrial & Engineering Chemistry Research , 2007, 46(10): 3157–3169
doi: 10.1021/ie060725x
17 Kolah A K, Asthana N S, Vu D T, Lira C T, Miller D J. Reaction kinetics for the heterogeneously catalyzed esterification of succinic acid with ethanol. Industrial & Engineering Chemistry Research , 2008, 47(15): 5313–5317
doi: 10.1021/ie0706616
18 Degirmenci L, Oktar N, Dogu G. Product Distributions in Ethyl tert-Butyl Ether Synthesis over Different Solid Acid Catalysts. Industrial & Engineering Chemistry Research , 2009, 48(5): 2566–2576
doi: 10.1021/ie801508r
19 Granollers M, Izquierdo J F, Cunill F. Effect of macroreticular acidic ion-exchange resins on 2-methyl-1-butene and 2-methyl-2-butene mixture oligomerization. Applied Catalysis A, General , 2012, 435-436: 163–171
doi: 10.1016/j.apcata.2012.05.051
20 Widdecke H, Klein J, Haupt U. The influence of matrix structure on the activity and selectivity of polymer supported catalysts. Makromolekulare Chemie. Macromolecular Symposia , 1986, 4(1): 145–155
doi: 10.1002/masy.19860040116
21 Klein J, Widdecke H, Bothe N. Influence of functional group distribution on the thermal stability and catalytic activity of sulfonated styrene-DVB-copolymers. Die Makromolekulare Chemie , 1984, 6(6): 211–226
doi: 10.1002/macp.1984.020061984115
22 Hart M, Fuller G, Brown D, Park C, Keane M, Dale J, Fougret C, Cockman R. Acidities and catalytic activities of persulfonated poly (styrene-co-divinylbenzene) ion-exchange resins. Catalysis Letters , 2001, 72(3-4): 135–139
doi: 10.1023/A:1009032027366
23 Hanková L, Holub L, Je?ábek K. Relation between functionalization degree and activity of strongly acidic polymer supported catalysts. Reactive & Functional Polymers , 2006, 66(6): 592–598
doi: 10.1016/j.reactfunctpolym.2005.10.011
24 Coutinho F M B, Rezende S M, Soares B G. Characterization of sulfonated poly (styrene- divinylbenzene) and poly (divinylbenzene) and its application as catalysts in esterification reaction. Journal of Applied Polymer Science , 2006, 102(4): 3616–3627
doi: 10.1002/app.24046
25 Faler G R, Loucks G R. US Patent, 4294995, 1979-10-13
26 Pressman E J, Willey P R. US Patent, 4584416, 1986-04-22
27 Wagner R B. US Patent, 3172916, 1965-04-09
28 Simon M Li. Process and Catalyst for Production of Bisphenol—A PJ.US4820740,1989-04-11
29 Tan Q, Jin Z Q, Jiang H S, Liu Z Z, He B J. US Patent, 5579942, 1998-06-02
30 Bothe N, Doscher F, Klein J, Widdecke H. Thermal stability of sulphonated styrene-divinylbenzene resins. Polymer , 1979, 20(7): 850–854
doi: 10.1016/0032-3861(79)90122-8
31 Gangadwala J, Mankar S, Mahajani S, Kienle A, Stein E. Esterification of acetic acid with butanol in the presence of ion-exchange resins as catalysts. Industrial & Engineering Chemistry Research , 2003, 42(10): 2146–2155
doi: 10.1021/ie0204989
32 Saha B, Sharma M. Esterification of formic acid, acrylic acid and methacrylic acid with cyclohexene in batch and distillation column reactors: ion-exchange resins as catalysts. Reactive & Functional Polymers , 1996, 28(3): 263–278
doi: 10.1016/1381-5148(95)00092-5
33 Qi X W, Chen H F. Review of ion-exchange resin catalyst for Bisphenol A synthesis. Chinese Petrochemical Industry , 1996, 25(10): 744–747
34 Ghosh P K, Guha T, Saha A N. Kinetic study of formation of Bisphenol A. Journal of Applied Chemistry , 1967, 17(8): 239–240
doi: 10.1002/jctb.5010170805
35 Reinicker R A, Gates B C. Bisphenol A synthesis: kinetics of the phenol-acetone condensation reaction catalyzed by sulfonic acid resin. AIChE Journal. American Institute of Chemical Engineers , 1974, 20(5): 933–940
doi: 10.1002/aic.690200514
36 He M Y, Chen Q, Wang X. Study on stability of catalyst for Bisphenol A synthesis. Chemical Industry and Engineering Progress. , 2005, 24(3): 274–277
37 Dixit A P, Yadav G D. Deactivation of ion-exchange resin catalysts. Part I: Alkylation of o-xylene with styrene. Reactive & Functional Polymers , 1996, 31(3): 237–250
doi: 10.1016/1381-5148(96)00062-4
38 Sugawara T, Watanabe M, Sumitani N, Shirasaki M, Suzuki T. US Patent, 5589517, 1996-12-31
39 Zeidan R K, Dufaud V, Davis M E. Enhanced cooperative, catalytic behavior of organic functional groups by immobilization. Journal of Catalysis , 2006, 239(2): 299–306
doi: 10.1016/j.jcat.2006.02.010
40 Udayakumar S, Ajaikumar S, Pandurangan A. Electrophilic substitution reaction of phenols with aldehydes: Enhance the yield of bisphenols by HPA and supported HPA. Catalysis Communications , 2007, 8(3): 366–374
doi: 10.1016/j.catcom.2006.05.054
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed