Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (2): 130-138   https://doi.org/10.1007/s11705-013-1332-7
  RESEARCH ARTICLE 本期目录
Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer
Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer
Xingfu SONG(), Kefeng TONG, Shuying SUN, Ze SUN, Jianguo YU
National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF(406 KB)   HTML
Abstract

Magnesium hydroxide is an important chemical, and is usually obtained from seawater or brine via precipitation process. The particle size distribution of magnesium hydroxide has great effects on the subsequent filtration and drying processes. In this paper, micron-sized magnesium hydroxide with high purity, large particle size and low water content in filter cake was synthesized via simple wet precipitation in a mixed suspension mixed product removal (MSMPR) crystallizer. The effects of reactant concentration, residence time and impurities on the properties of magnesium hydroxide were investigated by X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Malvern laser particle size analyzer. The results show that NaOH concentration and residence time have great effects on the water content and particle size of Mg(OH)2. The spherical Mg(OH)2 with uniform diameter of about 30 μm was obtained with purity higher than 99% and water content less than 31%. Furthermore, the crystallization kinetics based on the population balance theory was studied to provide the theoretical data for industrial enlargement, and the simulation coefficients (R2) based on ASL model and C-R model are 0.9962 and 0.9972, respectively, indicating that the crystal growth rate of magnesium hydroxide can be well simulated by the size-dependent growth models.

Key wordsmagnesium hydroxide    precipitation    micron-sized    crystallization kinetics
收稿日期: 2012-12-27      出版日期: 2013-06-05
Corresponding Author(s): SONG Xingfu,Email:xfsong@ecust.edu.cn   
 引用本文:   
. Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer[J]. Frontiers of Chemical Science and Engineering, 2013, 7(2): 130-138.
Xingfu SONG, Kefeng TONG, Shuying SUN, Ze SUN, Jianguo YU. Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer. Front Chem Sci Eng, 2013, 7(2): 130-138.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1332-7
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I2/130
1 Tai C, Li R K Y. Studies on the impact fracture behaviour of flame retardant polymeric material. Materials & Design , 2001, 22(1): 15–19
doi: 10.1016/S0261-3069(00)00029-7
2 Chen X L, Yu J, Guo S Y. Structure and properties of polypropylene composites filled with magnesium hydroxide. Journal of Applied Polymer Science , 2006, 102(5): 4943–4951
doi: 10.1002/app.24938
3 Cao H Q, Zheng H, Yin J F, Lu Y X, Wu S S, Wu X M, Li B J. Mg(OH)2 Complex Nanostructures with Superhydrophobicity and Flame Retardant Effects. Journal of Physical Chemistry C , 2010, 114(41): 17362–17368
doi: 10.1021/jp107216z
4 Gui H, Zhang X H, Dong W F, Wang Q G, Gao J M, Song Z H, Lai J M, Liu Y Q, Huang F, Qiao J L. Flame retardant synergism of rubber and Mg(OH)2 in EVA composites. Polymer , 2007, 48(9): 2537–2541
doi: 10.1016/j.polymer.2007.03.019
5 Zhang S N, Cheng F Y, Tao Z L, Gao F, Chen J. Removal of nickel ions from wastewater by Mg(OH)2/MgO nanostructures embedded in Al2O3 membranes. Journal of Alloys and Compounds , 2006, 426(1-2): 281–285
doi: 10.1016/j.jallcom.2006.01.095
6 Béarat H, McKelvy M J, Chizmeshya A V G, Sharma R, Carpenter R W. Magnesium hydroxide dehydroxylation/carbonation reaction processes: implications for carbon dioxide mineral sequestration. Journal of the American Ceramic Society , 2002, 85(4): 742–748
doi: 10.1111/j.1151-2916.2002.tb00166.x
7 Kang J C, Schwendeman S P. Comparison of the effects of Mg(OH)2 and sucrose on the stability of bovine serum albumin encapsulated in injectable poly (D,L-lactide-co-glycolide) implants. Biomaterials , 2002, 23(1): 239–245
doi: 10.1016/S0142-9612(01)00101-6
8 Kakaraniya S, Kari C, Verma R, Mehra A. Gas Absorption in Slurries of Fine Particles: SO2-Mg(OH)2-MgSO3 System. Industrial & Engineering Chemistry Research , 2007, 46(7): 1904–1913
doi: 10.1021/ie061461h
9 Olanders B, Stroemberg D. Reduction of nitric oxide over magnesium oxide and dolomite at fluidized bed conditions. Energy & Fuels , 1995, 9(4): 680–684
doi: 10.1021/ef00052a016
10 Yan L, Zhuang J, Sun X M, Deng Z X, Li Y D. Formation of rod-like Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration. Materials Chemistry and Physics , 2002, 76(2): 119–122
doi: 10.1016/S0254-0584(01)00509-0
11 Yoshida T, Tanaka T, Yoshida H, Funabiki T, Yoshida S, Murata T. Study of dehydration of magnesium hydroxide. Journal of Physical Chemistry , 1995, 99(27): 10890–10896
doi: 10.1021/j100027a033
12 L'vov B V, Novichikhin A V, Dyakov A O. Mechanism of thermal decomposition of magnesium hydroxide. Thermochimica Acta , 1998, 315(2): 135–143
doi: 10.1016/S0040-6031(97)00404-8
13 Yu J C, Xu A W, Zhang L Z, Song R Q, Wu L. W L. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates. Journal of Physical Chemistry B , 2004, 108(1): 64–70
doi: 10.1021/jp035340w
14 Zou G L, Liu R, Chen W X, Xu Z D. Preparation and characterization of lamellar-like Mg(OH)2 nanostructures via natural oxidation of Mg metal in formamide/water mixture. Materials Research Bulletin , 2007, 42(6): 1153–1158
doi: 10.1016/j.materresbull.2006.09.008
15 Ranjit K T, Klabunde K J. Solvent effects in the hydrolysis of magnesium methoxide, and the production of nanocrystalline magnesium hydroxide. An aid in understanding the formation of porous inorganic materials. Chemistry of Materials , 2005, 17(1): 65–73
doi: 10.1021/cm040360b
16 Sun X T, Xiang L, Zhu W C, Liu Q. Influence of solvents on the hydrothermal formation of one‐dimensional magnesium hydroxide. Crystal Research and Technology , 2008, 43(10): 1057–1061
doi: 10.1002/crat.200800069
17 Utamapanya S, Klabunde K J, Schlup J R. Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chemistry of Materials , 1991, 3(1): 175–181
doi: 10.1021/cm00013a036
18 Hsu J P, Nacu A. Preparation of submicron-sized Mg(OH)2 particles through precipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2005, 262(1-3): 220–231
doi: 10.1016/j.colsurfa.2005.04.038
19 Dong H B, Du Z P, Zhao Y H, Zhou D P. Preparation of surface modified nano-Mg(OH)2 via precipitation method. Powder Technology , 2010, 198(3): 325–329
doi: 10.1016/j.powtec.2009.11.014
20 Lv J P, Qiu L Z, Qu B J. Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method. Journal of Crystal Growth , 2004, 267(3-4): 676–684
doi: 10.1016/j.jcrysgro.2004.04.034
21 Henrist C, Mathieu J P, Vogels C, Rulmont A, Cloots R. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. Journal of Crystal Growth , 2003, 249(1): 321–330
doi: 10.1016/S0022-0248(02)02068-7
22 Wu Q L, Xiang L, Jin Y. Influence of CaCl2 on the hydrothermal modification of Mg(OH)2. Powder Technology , 2006, 165(2): 100–104
doi: 10.1016/j.powtec.2006.03.023
23 Yan C L, Xue D F, Zou L J, Yan X X, Wang W. Preparation of magnesium hydroxide nanoflowers. Journal of Crystal Growth , 2005, 282(3-4): 448–454
doi: 10.1016/j.jcrysgro.2005.05.038
24 Alamdari A, Rahimpour M R, Esfandiari N, Nourafkan E. Kinetics of magnesium hydroxide precipitation from sea bittern. Chemical Engineering and Processing: Process Intensification , 2008, 47(2): 215–221
doi: 10.1016/j.cep.2007.02.012
25 S?hnel O, Mare?ek J. Precipitation of magnesium hydroxide. Kristall und Technik , 1978, 13(3): 253–262
doi: 10.1002/crat.19780130304
26 Turek M, Gnot W. Precipitation of magnesium hydroxide from brine. Industrial & Engineering Chemistry Research , 1995, 34(1): 244–250
doi: 10.1021/ie00040a025
27 Petric B, Petric N. Investigations of the Rate of Sedimentation of Magnesium Hydroxide Obtained from Sea Water. Industrial & Engineering Chemistry Process Design and Development , 1980, 19(3): 329–335
doi: 10.1021/i260075a001
28 Song X F, Sun S Y, Zhang D K, Wang J, Yu J G. Synthesis and characterization of magnesium hydroxide by batch reaction crystallization. Frontiers of Chemical Science and Engineering , 2011, 5(4): 1–6
doi: 10.1007/s11705-011-1125-9
29 Dobrescu V, P?ra?cu E, Pincovschi E. Continuous magnesium hydroxide precipitation. Crystal Research and Technology , 1987, 22(3): 327–338
doi: 10.1002/crat.2170220307
30 Wang P P, Li C H, Gong H Y, Wang H Q, Liu J R. Morphology control and growth mechanism of magnesium hydroxide nanoparticles via a simple wet precipitation method. Ceramics International , 2011, 37(8): 3365–3370
doi: 10.1016/j.ceramint.2011.05.138
31 Chen D H, Zhu L Y, Zhang H P, Xu K, Chen M C. Magnesium hydroxide nanoparticles with controlled morphologies via wet coprecipitation. Materials Chemistry and Physics , 2008, 109(2-3): 224–229
doi: 10.1016/j.matchemphys.2007.11.014
32 Wojcik J A, Jones A G. Experimental Investigation into Dynamics and Stability of Continuous MSMPR Agglomerative Precipitation of CaCO3 Crystals. Chemical Engineering Research & Design , 1997, 75(2): 113–118
doi: 10.1205/026387697523516
33 McCabe W L. Crystal Growth in Aqueous Solutions1: II—Experimental. Industrial & Engineering Chemistry , 1929, 21(2): 112–119
doi: 10.1021/ie50230a004
34 McCabe W L. Crystal Growth in Aqueous Solutions1: I—Theory. Industrial & Engineering Chemistry , 1929, 21(1): 30–33
doi: 10.1021/ie50229a008
35 Abegg C F, Stevens J D, Larson M A. Crystal size distributions in continuous crystallizers when growth rate is size dependent. AIChE Journal. American Institute of Chemical Engineers , 1968, 14(1): 118–122
doi: 10.1002/aic.690140121
36 Canning T F, Randolph A D. Some aspects of crystallization theory: systems that violate McCabe's delta L Law. AIChE Journal. American Institute of Chemical Engineers , 1967, 13(1): 5–10
doi: 10.1002/aic.690130104
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed