Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (3): 262-269   https://doi.org/10.1007/s11705-013-1334-5
  RESEARCH ARTICLE 本期目录
Gold modified cobalt-based Fischer-Tropsch catalysts for conversion of synthesis gas to liquid fuels
Gold modified cobalt-based Fischer-Tropsch catalysts for conversion of synthesis gas to liquid fuels
Alan J. McCue1, Jura Aponaviciute1, Richard P.K. Wells1, James A. Anderson1,2()
1. Surface Chemistry and Catalysis Group, Department of Chemistry, University of Aberdeen, AB24 3UE, Aberdeen, UK; 2. Surface Chemistry and Catalysis Group, School of Engineering, University of Aberdeen, AB24 3UE, Aberdeen, UK
 全文: PDF(355 KB)   HTML
Abstract

The addition of Au as a promoter/modifier for alumina supported Co catalyst has been studied by combined in-situ high temperature, high pressure Fourier transform infrared (FTIR) and on-line gas chromatography. The combination of these tools permitted the state of the active catalyst surface to be monitored while following the elution of reaction products during the first 5–7 h on stream of the catalyst. The catalysts under study were a 10%Co/Al2O3 and a 2.5%Au/10%Co/Al2O3. Samples were characterised before use using Raman and temperature programmed reduction (TPR). During the initial stages of reaction, hydrocarbons were built up on the surface of the catalyst as monitored by FTIR and the nature and amount of these species were assessed in terms of CH2/CH3 ratio and the density of these alkyl fragments by employing absorption coefficients for the individual components. The nature and reducibility of the Co particles were modified by the presence of Au while the later also shifted the CO/H2 balance by acting as an effective water-gas shift catalyst during the early stages of reaction. This characteristic was lost during reaction as a consequence of redistribution of the two metallic phases.

Key wordsgold modified catalyst    conversion of synthesis gas
收稿日期: 2013-01-02      出版日期: 2013-09-05
Corresponding Author(s): Anderson James A.,Email:j.anderson@abdn.ac.uk   
 引用本文:   
. Gold modified cobalt-based Fischer-Tropsch catalysts for conversion of synthesis gas to liquid fuels[J]. Frontiers of Chemical Science and Engineering, 2013, 7(3): 262-269.
Alan J. McCue, Jura Aponaviciute, Richard P.K. Wells, James A. Anderson. Gold modified cobalt-based Fischer-Tropsch catalysts for conversion of synthesis gas to liquid fuels. Front Chem Sci Eng, 2013, 7(3): 262-269.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1334-5
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I3/262
Fig.1  
Catalyst stateBET surface area /(m2·g-1)Pore volume /(cm3·g-1)Pore size maxima /?
Fresh1030.52359
Used810.39216
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
CatalystCO conv. /%Hydrocarbon selectivity /%C5ison -paraffin ratio
CH4C2-C4C≥5
Co/Al2O30.928.915.755.40.43
Au-Co/Al2O32.125.419.055.60.49
Tab.2  
1 Fischer F, Tropsch H. Die erd?lsynthese bei gew?hnlichem druck aus den vergangsprodukten der kohlen. Brennstoff Chemie , 1926, 7: 97–104
2 Viswanathan B, Gopalakrishnan R. Effect of support and promoter in Fischer Tropsch cobalt catalysts. Journal of Catalysis , 1986, 99(2): 342–348
doi: 10.1016/0021-9517(86)90359-3
3 Enger B C, Fossan A L, Borg ?, Rytter E, Holmen A. Modified alumina as catalyst support for cobalt in the Fischer-Tropsch synthesis. Journal of Catalysis , 2011, 284(1): 9–22
doi: 10.1016/j.jcat.2011.08.008
4 Morales F, Weckhuysen B M. Catalysis, Volume 19, RSC , 2006
5 Anderson J A, McQuire M W, Rochester C H, Sweeney T. In-situ FTIR study of CO/H2 reactions over Rh/SiO2 catalysts at high pressure and temperature. Catalysis Today , 1991, 9(1-2): 23–30
doi: 10.1016/0920-5861(91)85003-Q
6 Anderson J A, Khader M M. A high pressure, high temperature infrared study of CO hydrogenation over Rh/ZrO2. Journal of Molecular Catalysis A Chemical , 1996, 105(3): 175–183
doi: 10.1016/1381-1169(95)00247-2
7 Anderson J A, Khader M M. An in situ infrared study of hydrogenation of CO over Rh/ZrO2. Mikrochimica Acta , 1997, 14: 363–365
8 McQuire M W, Rochester C H, Anderson J A. Syngas reactions over Rh/SiO2 at high-pressure and temperature studied by Fourier-transform infrared-spectroscopy. Journal of the Chemical Society, Faraday Transactions , 1992, 88(6): 879–886
doi: 10.1039/ft9928800879
9 Anderson J A, Fernandez-Garcia M, Haller G L. Surface and bulk characterisation of metallic phases present during CO hydrogenation over Pd-Cu/KL zeolite catalysts. Journal of Catalysis , 1996, 164(2): 477–483
doi: 10.1006/jcat.1996.0404
10 Jiang M, Koizumi N, Ozaki T, Yamada M. Adsorption properties of cobalt and cobalt-managese catalysts studied by in-situ diffuse reflectance FTIR using CO and CO+H2 as probes. Applied Catalysis A, General , 2001, 209(1-2): 59–70
doi: 10.1016/S0926-860X(00)00755-9
11 Kobori Y, Yamasaki H, Naito S, Oniishi T, Tamuru K. Mechanistic study of carbon-monoxide hydrogenation over ruthenium catalysts. Journal of the Chemical Society, Faraday Transactions I , 1982, 78(5): 1473–1490
doi: 10.1039/f19827801473
12 Yamasaki H, Kobori Y, Naito S, Oniishi T, Tamuru K. Infrared study of the reaction of H2 + CO on a Ru-SiO2 catalysts. Journal of the Chemical Society, Faraday Transactions I , 1981, 77(12): 2913–2925
doi: 10.1039/f19817702913
13 Dalla Betta R A, Shelef M. Heterogeneous methanation—in-situ IR spectroscopic study of Ru/Al2O3 during hydrogenation of CO. Journal of Catalysis , 1977, 48(1-3): 111–119
doi: 10.1016/0021-9517(77)90082-3
14 Ekerdt J G, Bell A T. Synthesis of hydrocarbons from CO and H2 over silica-supported Ru— reaction rate measurements and infrared-spectra of adsorbed species. Journal of Catalysis , 1979, 58(2): 170–187
doi: 10.1016/0021-9517(79)90255-0
15 King D L. In-situ infrared study of CO hydrogenation over slica and alumina supported ruthenium and silica supported iron. Journal of Catalysis , 1980, 61(1): 77–86
doi: 10.1016/0021-9517(80)90341-3
16 Jalama K, Coville N J, Hildebrandt D, Glasser D, Jewell L L, Anderson J A, Taylor S, Enache D, Hutchings G J. Effect of the addition of Au on Co/TiO2 catalyst for the Fischer-Tropsch reaction. Topics in Catalysis , 2007, 44(1-2): 129–136
doi: 10.1007/s11244-007-0286-8
17 Jalama K, Coville N J, Xiong H, Hildebrandt D, Glasser D, Taylor S, Carley A, Anderson J A, Hutchings G J. A comparison of Au/Co/Al2O3 and Au/Co/SiO2 catalysts in the Fischer-Tropsch reaction. Applied Catalysis A, General , 2011, 395(1-2): 1–9
doi: 10.1016/j.apcata.2011.01.002
18 Andreeva D, Idaklev V, Tabakova T, Giovanoli R. Low temperature water gas shift reactions on Au/TiO2, Au/α-Fe2O3 and Au/Co3O4. Bulgarian Chemical Communications , 1998, 30: 59–68
19 Tang C W, Wang C B, Chen S H. Characteristion of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochimica Acta , 2008, 473(1-2): 68–73
doi: 10.1016/j.tca.2008.04.015
20 Jacobs G, Ji Y, Davis B H, Cronauer D, Kropf A J, Marshall C L. Fischer-Tropsch synthesis: Temperature programmed EXAFS/XANES investiation of the influence of support type, cobalt loading and noble metal promoter addition to the reduction behaviour of cobalt oxide particles. Applied Catalysis A, General , 2007, 333(2): 177–191
doi: 10.1016/j.apcata.2007.07.027
21 Li J, Zhan X, Zhang Y, Jacobs G, Das T, Davis B H. Fischer-Tropsch synthesis: effect of water on the deactivation of Pt promoted Co/Al2O3 catalysts. Applied Catalysis A, General , 2002, 228(1-2): 203–212
doi: 10.1016/S0926-860X(01)00977-2
22 Jacobs G, Ribeiro M C, Ma W, Ji Y, Khalid S, Sumodjo P T A, Davis B H, 0. (Cu, Ag, Au) promotion of 15%Co/Al2O3 Fischer-Tropsch synthesis catalysts. Applied Catalysis A, General , 2009, 361(1-2): 137–151
doi: 10.1016/j.apcata.2009.04.007
23 Couble J, Bianchi D. Heats of adsorption of linearly adsorbed CO species on Co2+ and Co sites of reduced Co/Al2O3 catalysts in relashionship with the CO/H2 reaction. Applied Catalysis A, General , 2012, 445: 1–13
doi: 10.1016/j.apcata.2012.07.017
24 Khodakov A Y, Lynch J, Bazin D, Rebours B, Zanier N, Moisan B, Chaumette P. Reducibility of cobalt species in silica-supported Fischer-Tropsch catalysts. Journal of Catalysis , 1997, 168(1): 16–25
doi: 10.1006/jcat.1997.1573
25 Busca G, Guidetti P, Lorenzelli V. Fourier-Transform infrared study of the surface properties of cobalt oxides. Journal of the Chemical Society, Faraday Transactions I , 1990, 86(6): 989–994
doi: 10.1039/ft9908600989
26 Rao K M, Spoto G, Zecchina A. IR investigation of CO adsorbed on Co particles obtained via Co2(CO)8 on MgO and SiO2. Journal of Catalysis , 1988, 113(2): 466–474
doi: 10.1016/0021-9517(88)90272-2
27 Galhenage R P, Ammal S C, Yan H, Duke A S, Tenney S A, Heyden A, Chen D A. Nucleation, growth and adsorbate-induced changes in composition for Co-Au bimetallic clusters on TiO2. Journal of Physical Chemistry C , 2012, 116(46): 24616–24629
doi: 10.1021/jp307888p
28 Wexler A S. Infrared determination of structural units in organic compounds by integrated intensity measurements: Alkanes, alkenes and monosubstituted alkyl benzenes. Spectrochimica Acta. Part A: Molecular Spectroscopy , 1965, 21: 1725–1742
29 McCue A J, McNab A, Anderson J A. unpublished data
30 Stefanowicz-Pieta I A, Ishaq M, Wells R, Anderson J A. Quantitative determination of acid sites on silica-alumina. Applied Catalysis A, General , 2010, 390(1-2): 127–134
doi: 10.1016/j.apcata.2010.10.001
31 McQuire M W, Rochester C H, Anderson J A. Fourier-transform infrared study of Rh/SiO2 catalysts exposed to CO H2 mixtures at high-pressure and temperature. Journal of the Chemical Society, Faraday Transactions , 1991, 87(12): 1921–1928
doi: 10.1039/ft9918701921
32 Jacobs G, Chaney J A, Patterson P M, Das T K, Davis B H. Fischer-Tropsch synthesis: study of the promotion of Re on the reduction property of Co/Al2O3 catalysts bu in-situ EXAFS/XANES of CoK and Re L-III edges and XPS. Applied Catalysis A, General , 2004, 264(2): 203–212
doi: 10.1016/j.apcata.2003.12.049
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed