Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (3): 303-311   https://doi.org/10.1007/s11705-013-1341-6
  RESEARCH ARTICLE 本期目录
Investigation of hydrolysis conditions and properties on protein hydrolysates from flatfish skin
Investigation of hydrolysis conditions and properties on protein hydrolysates from flatfish skin
Hua ZHANG, Hongji ZHU(), Shipeng WANG, Weihua WANG
Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(365 KB)   HTML
Abstract

Response surface method (RSM), based on Box-Behnken design, was used to optimize the enzymatic hydrolysis conditions of flatfish skin protein hydrolysates (FSPH). Among the tested proteases, the combination of nutrase and trypsin was selected. The optimal hydrolysis conditions were as follows: pH 7.3, temperature 51.8°C, and the enzyme/substrate (E/S) ratio 2.5; under these conditions, the maximum peptide yield (PY) was 69.41±0.43%. The physiochemical analysis showed that the amino acids (His, Asp and Glu) of FSPH accounted for 18.15%, and FSPH was a mixture of polypeptides mostly distributed among 900–2000 Da. FSPH could exhibit a 93% chelating effect on ferrous ion at a concentration of 400 μg/mL, and also a notable reducing power. This study showed bioprocess for the production of FSPH for the first time, which had a good potential for valuable ingredients in the food, cosmetic and medicine industries.

Key wordsflatfish skin    protein hydrolysates    metal chelating activity    reducing power
收稿日期: 2013-02-02      出版日期: 2013-09-05
Corresponding Author(s): ZHU Hongji,Email:zhj@tju.edu.cn   
 引用本文:   
. Investigation of hydrolysis conditions and properties on protein hydrolysates from flatfish skin[J]. Frontiers of Chemical Science and Engineering, 2013, 7(3): 303-311.
Hua ZHANG, Hongji ZHU, Shipeng WANG, Weihua WANG. Investigation of hydrolysis conditions and properties on protein hydrolysates from flatfish skin. Front Chem Sci Eng, 2013, 7(3): 303-311.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1341-6
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I3/303
Proteases a)Optimal hydrolysis conditionsDH /%PY /%
AlcalasepH 10, 50°C11.43±0.7843.16±0.34
NeutrasepH 7, 50°C13.06±0.4958.47±0.75
TrypsinpH 7, 55°C9.11±0.3042.55±0.29
PepsinpH 2, 37°C12.22±0.6548.82±0.54
Neutrase → pepsinpH 7, 50°C → pH 2, 37°C21.25±0.1461.59±0.66
Neutrase → alcalasepH 7, 50°C → pH 10, 50°C14.93±0.7153.28±0.72
Alcalase → pepsinpH 10, 50°C → pH 2, 37°C12.22±0.4856.64±0.53
Neutrase+ trypsinpH 7, 50°C19.14±0.3565.95±0.63
Tab.1  
Moisture /%Protein /%Lipid /%Ash /%
Flatfish skin80.29±0.0314.72±0.143.41±0.161.6±0.04
FSPH9.3±0.0586.81±0.161.8±0.092.09±0.07
Tab.2  
Natural variablesStandard variablesCoded levels a)
-10+1
pHX1678
Temperature /°CX2455055
E/S /%X3234
Tab.3  
RunStandard variablesResponses
x1x2x3DH /%PY /%
1-1-1016.9160.02
21-1016.8959.61
3-11017.2859.32
411018.2763.28
5-10-116.3258.76
610-118.4366.01
7-10115.9557.34
810117.3359.49
90-1-118.5763.31
1001-119.1565.39
110-1118.0161.44
1201117.3259.73
1300019.6368.73
1400018.5168.65
1500019.1566.43
1600019.5068.53
1700019.6366.33
Tab.4  
DHPY
DF99
Sum of squares19.25224.69
F-value7.0417.2
Prob>F0.00880.0006
R20.90050.9567
Tab.5  
Amino acidg amino acid/100 g protein
Asp6.36
Thr2.74
Ser3.60
Glu9.02
Pro11.84
Gly22.62
Ala10.73
Cys0.13
Val2.66
Met1.76
Ile1.29
Leu2.88
Tyr0.80
Phe1.91
His1.14
Lys3.50
Arg7.92
Trp0.10
Total91
Hydrophilic63.54%
Hydrophobic36.46%
Tab.6  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 Dekkers E, Raghavan S, Kristinsson H G, Marshall M R. Oxidative stability of mahi mahi red muscle dipped in tilapia protein hydrolysates. Food Chemistry , 2011, 124(2): 640-645
doi: 10.1016/j.foodchem.2010.06.088
2 Yang J L, Liang W S, Chow C J, Siebert K J. Process for the production of tilapia retorted skin gelatin hydrolysates with optimized antioxidative properties. Process Biochemistry , 2009, 44(10): 1152-1157
doi: 10.1016/j.procbio.2009.06.013
3 Zhuang Y L, Sun L P. Preparation of reactive oxygen scavenging peptides from tilapia (Oreochromis niloticus) skin gelatin: Optimization using response surface methodology. Journal of Food Science , 2011, 76(3): 483-489
doi: 10.1111/j.1750-3841.2011.02108.x
4 Giménez B, Gómez-Estaca J, Alemán A, Gómez-Guillén M C, Montero M P. Gómez-Estaca J, Alemán A, Montero P, Gómez-Guillén M C, Montero M P. Improvement of the antioxidant properties of squid skin gelatin films by the addition of hydrolysates from squid gelatin. Food Hydrocolloids , 2009, 23(5): 1322-1327
doi: 10.1016/j.foodhyd.2008.09.010
5 Sathivel S, Huang J, Bechtel P J. Properties of pollock(theragra chalcogramma) skin hydrolysates and effects on lipid oxidation of skinless pink salmon(oncorahynchus gorbuscha) fillets during 4 months of frozen storage. Journal of Food Biochemistry , 2008, 32(2): 247-263
doi: 10.1111/j.1745-4514.2008.00172.x
6 Lee J K, Jeon J K, Byun H J. Effect of angiotensin I converting enzyme inhibitory peptide purified from skate skin hydrolysate. Food Chemistry , 2011, 125(2): 495-499
doi: 10.1016/j.foodchem.2010.09.039
7 Himaya S W A, Ngo D H, Ryu B M, Kim S K. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chemistry , 2012, 132(4): 1872-1882
doi: 10.1016/j.foodchem.2011.12.020
8 Zhuang Y L, Hou H, Zhao X, Zhang Z H, Li B F. Effects of collagen and collagen hydrolysate from jellyfish (Rhopilema esculentum) on mice skin photoaging induced by UV irradiation. Journal of Food Science , 2009, 74(6): 183-188
doi: 10.1111/j.1750-3841.2009.01236.x
9 Sampath Kumar N S, Nazeer R A, Jaiganesh R. Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Amino Acids , 2012, 42(5): 1641-1649
doi: 10.1007/s00726-011-0858-6
10 Wasswa J, Tang J, Gu X H. optimization of the production of hydrolysates from grass carp (Ctenopharyngodon inella)skin using alcalase. Journal of Food Biochemistry , 2008, 32(4): 460-473
doi: 10.1111/j.1745-4514.2008.00176.x
11 Nazeer R A, Kulandai K A. Evaluation of antioxidant activity of muscle and skin protein hydrolysates from giant kingfish, Caranx ignobilis. International Journal of Food Science & Technology , 2012, 47(2): 274-281
doi: 10.1111/j.1365-2621.2011.02836.x
12 Yin H, Pu J, Wan Y, Xiang B, Bechtel P J, Sathivel S. Rheological and functional properties of catfish skin protein hydrolysates. Journal of Food Science , 2010, 75(1): E11-E17
doi: 10.1111/j.1750-3841.2009.01385.x pmid:Yin HPu JWan YXiang BBechtel P JSathivel S
13 Klompong V, Benjakul S, Kantachote D, Shahidi F. Characteristics and use of yellow stripe trevally hydrolysate as culture media. Journal of Food Science , 2009, 74(6): S219-S225
doi: 10.1111/j.1750-3841.2009.01213.x
14 Sathivel S, Bechtel P J, Babbitt J, Smiley S, Crapo C, Reppond K D, Prinyawiwatkul W. Biochemical and functional properties of Herring (Clupea harengus) byproduct hydrolysates. Journal of Food Science , 2003, 68(7): 2196-2200
doi: 10.1111/j.1365-2621.2003.tb05746.x
15 Kolodziejska I, Skierka E, Sadowska M, Kolodziejska W, Niecikowska C. Parameters affecting the isolation of collagen from squid (Illex argentinus) skins. Food Chemistry , 1999, 66(2): 153-157
doi: 10.1016/S0308-8146(98)00251-9
16 Horecker B, Kaplan N O, Scheraga H A. The macromolecular chemistry of gelatin. New York and London: Academic Press, 1964, 5: 127-221
17 Liceaga-Gesualdo A M, Li-Chan E C Y. Functional properties of fish protein hydrolysate from herring (Clupea harengus). Journal of Food Science , 1999, 64(6): 1000-1004
doi: 10.1111/j.1365-2621.1999.tb12268.x
18 Woo J W, Yu S J, Cho S M, Lee Y B, Kim S B. Extraction optimization and properties of collagen from yellow fintuna (Thunnus albacares) dorsal skin. Food Hydrocolloids , 2008, 22(5): 879-887
doi: 10.1016/j.foodhyd.2007.04.015
19 AOAC. Official methods of analysis. 16th ed. Washington DC: Association of Official Analytical Chemists Inc , 1995
20 Kim S K, Byun H G, Park P J, Shahidi F. Angiotensin I converting enzyme inhibitory peptides purified from bovine skin gelatin hydrolysate. Journal of Agricultural and Food Chemistry , 2001, 49(6): 2992-2997
doi: 10.1021/jf001119u
21 Tsumaura K, Kugimiya W, Bando N, Hiemori M, Ogawa T. Preparation of hypoallergenic soybean protein with processing functionality by selective enzymatic hydrolysis. Food Science and Technology Research , 1999, 5(2): 171-175
doi: 10.3136/fstr.5.171
22 Church F C, Swaisgood H E, Porter D H, Catignani G L. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science , 1983, 66(6): 1219-1227
doi: 10.3168/jds.S0022-0302(83)81926-2
23 Decker E A, Welch B. Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and Food Chemistry , 1990, 38(3): 674-677
doi: 10.1021/jf00093a019
24 Yen G C, Chen H Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry , 1995, 43(1): 27-32
doi: 10.1021/jf00049a007
25 Byun H G, Kim S K. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochemistry , 2001, 36(12): 1155-1162
doi: 10.1016/S0032-9592(00)00297-1
26 Liu H S, Chiou Y R. Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology. Chemical Engineering Journal , 2005, 112(1-3): 173-179
doi: 10.1016/j.cej.2005.07.012
27 Muralidhar R V, Chirumamila R R, Marchant R, Nigam P. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochemical Engineering Journal , 2001, 9(1): 17-23
doi: 10.1016/S1369-703X(01)00117-6
28 Liang J, Pei X R, Zhang Z F, Wang N, Wang J B, Li Y. A chronic oral toxicity study of marine collagen peptides preparation from Chum salmon (Oncorhynchus keta) skin using sprague-dawley rat. Marine Drugs , 2012, 10(1): 20-34
29 Saiga A, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry , 2003, 51(12): 3661-3667
doi: 10.1021/jf021156g
30 Chen H M, Muramoto K, Yamauchi F, Nokihara K. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. Journal of Agricultural and Food Chemistry , 1996, 44(9): 2619-2623
doi: 10.1021/jf950833m
31 Zhu L, Chen J, Tang X, Xiong Y L. Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. Journal of Agricultural and Food Chemistry , 2008, 56(8): 2714-2721
doi: 10.1021/jf703697e
32 Je J Y, Kim S Y, Kim S K. Preparation and antioxidative activity of hoki frame protein hydrolysates using ultrafiltration membrane. European Food Research and Technology , 2005, 22(1-2): 157-162
doi: 10.1007/s00217-005-1142-3
33 Ao J, Li B. Amino acid composition and antioxidant activities of hydrolysates and peptide fractions from porcine collagen. Food Science and Technology International , 2012, 18 (5): 425-434
34 Wu H C, Chen H M, Shiau C Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International , 2003, 36(1-2): 949-957
doi: 10.1016/S0963-9969(03)00104-2
35 Chung Y C, Chang C T, Chao W W, Lin C F, Chou S T. Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. Journal of Agricultural and Food Chemistry , 2002, 50(8): 2454-2458
doi: 10.1021/jf011369q
36 Zhu K X, Zhou H, Qian H F. Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process Biochemistry , 2006, 41(6): 1296-1302
doi: 10.1016/j.procbio.2005.12.029
37 Juntachote T, Berghofer E. Antioxidative properties and stability of ethanolic extracts of holy basil and Galangal. Food Chemistry , 2005, 92(2): 193-202
doi: 10.1016/j.foodchem.2004.04.044
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed