Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (3): 312-321   https://doi.org/10.1007/s11705-013-1344-3
  RESEARCH ARTICLE 本期目录
Microwave assisted synthesis of poly(2-hydroxyethylmethacrylate) grafted agar (Ag-g-P(HEMA)) and its application as a flocculant for wastewater treatment
Microwave assisted synthesis of poly(2-hydroxyethylmethacrylate) grafted agar (Ag-g-P(HEMA)) and its application as a flocculant for wastewater treatment
Gautam SEN, G. Usha RANI(), Sumit MISHRA
Department of Applied Chemistry, Birla Institute of Technology, Mesra, Ranchi 835 215, India
 全文: PDF(422 KB)   HTML
Abstract

Poly(2-hydroxyethylmethacrylate) chains were grafted onto the backbone of agar using a microwave assisted method involving a combination of microwave irradiation and ceric ammonium nitrate to initiate the grafting reaction. The synthesized graft copolymers were characterized by intrinsic viscosity measurements, Fourier transform infrared spectroscopy, elemental analysis (C, H, N, O and S) and scanning electron microscopy. Ag-g-P(HEMA)-2 showed a much higher flocculation efficacy than agar. The optimized dosage of flocculation for Ag-g-P(HEMA)-2 in the wastewater was found to be 0.75 ppm. Compared to agar, Ag-g-P(HEMA)-2 was found to considerably reduce the pollutant load in the wastewater.

Key wordsagar    flocculant    microwave assisted synthesis    jar test protocol    poly(HEMA) grafted agar    wastewater treatment
收稿日期: 2013-02-12      出版日期: 2013-09-05
Corresponding Author(s): RANI G. Usha,Email:ushaindian@yahoo.com   
 引用本文:   
. Microwave assisted synthesis of poly(2-hydroxyethylmethacrylate) grafted agar (Ag-g-P(HEMA)) and its application as a flocculant for wastewater treatment[J]. Frontiers of Chemical Science and Engineering, 2013, 7(3): 312-321.
Gautam SEN, G. Usha RANI, Sumit MISHRA. Microwave assisted synthesis of poly(2-hydroxyethylmethacrylate) grafted agar (Ag-g-P(HEMA)) and its application as a flocculant for wastewater treatment. Front Chem Sci Eng, 2013, 7(3): 312-321.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1344-3
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I3/312
Fig.1  
Graft copolymer gradesWt of agar/gWt of HEMA/gWt ofCAN/gTime of microwave irradiation (up to gel formation)Grafting/%Intrinsic viscosity /(dL·g-1)
Ag-g-P(HEMA)1100.20 sec0.00%0.00
Ag-g-P(HEMA)-11100.282.3 sec200%4.44
Ag-g-P(HEMA)-21100.378.77 sec835%10.66
Ag-g-(PHEMA)-31100.460.2 sec476.4%5.35
Ag-g-P(HEMA)-4150.393.3 sec648.56%7.96
Ag-g-P(HEMA)-51150.381.21 sec329%5.24
Agar (Ag)-----2.96
Tab.1  
Fig.2  
Fig.3  
PolymerC/%H/%O/%N/%
Agar46.935.746.930.00
HEMA55.377.7436.880.00
Ag-g-P(HEMA)-249.697.8760.00
Tab.2  
Fig.4  
PolymerυO–HυO–HBoldItalicC–HυC–O–CυC=O
Agar (Ag)3170.973572.172980.02, 2887.441068.56-
Ag-g-P(HEMA)-23167.123583.742947.23, 2885.511078.28, 1022.271724.35
Tab.3  
Fig.5  
Fig.6  
Polymer gradePercentage grafting /(G%)Intrinsic viscosity /(dL·g-1)Flocculation efficacy (in terms of percent reduction of turbidity in a 0.25% kaolin suspension at optimized dosage 0.75 ppm)
Agar-2.9620.28%
Ag-g-P(HEMA)-1200%4.4424.56%
Ag-g-P(HEMA)-5329%5.2426.83%
Ag-g-P(HEMA)-3476.4%5.3530.73%
Ag-g-P(HEMA)-4648.54%7.9642.70%
Ag-g-P(HEMA)-2835%10.6649.52%
Tab.4  
Fig.7  
ParametersSET 1SET 2SET 3
Turbidity/NTU20.618.6214.9
TDS/ppm336280220
TSS/ppm1347850
Total iron /ppm1.931.891.13
Total chromiumVI/ppm0.1410.0230.005
COD/ppm609.09290.9081.81
Tab.5  
1 Wuttisela K, Panijpan B, Triampo W, Triampo D. Optimization of the water absorption by crosslinked agar-g-poly(acrylic acid). Polymer (Korea) , 2008, 32(6): 537–543
2 Labropoulos K C, Niesz D E, Danforth S C, Kevrekidis P G. Dynamic rheology of agar gels: Theory and experiments. Part I: Development of a rheological model. Carbohydrate Polymers , 2002, 50(4): 393–406
doi: 10.1016/S0144-8617(02)00084-X
3 Armisen R, Galatas F. Properties and uses of agar, production and utilization of products from commercial seaweeds (Ch. 1). Fisheries and Aquaculture Organization , 1987, 288: 1–57
4 Odian G. Principles of polymerization (3rd edition). New York: John wiley & sons, 1991, 2: 17–19
5 Gowariker V R, Viswanathan N V, Sreedhar J. Polymer Science. New Delhi: New age International (p) Ltd, 1986, 91–92
6 Bhattacharya A, Rawlins J W, Ray P, eds. Polymer grafting and crosslinking. New Jersey: John wiley & sons, 2008, 1–329
7 Da Silva D A, de Paula R C M, Feitosa J P A. Graft copolymerization of acrylamide onto cashew gum. European Polymer Journal , 2007, 43(6): 2620–2629
doi: 10.1016/j.eurpolymj.2007.03.041
8 Mostafa K A. Graft polymerization of acrylic acid onto starch using potassium permanganate acid (redox system). Journal of Applied Polymer Science , 1995, 56(2): 263–269
doi: 10.1002/app.1995.070560217
9 Rani U G, Mishra S, Sen G, Jha U. Polyacrylamide grafted agar: Synthesis and applications of conventional and microwave assisted technique. Carbohydrate Polymers , 2012, 90(2): 784–791
doi: 10.1016/j.carbpol.2012.05.069
10 Bharti S, Mishra S, Sen G. Ceric ion initiated synthesis of polyacrylamide grafted oatmeal: Its application as flocculant for waste water treatment. Carbohydrate Polymers , 2013, 93(2): 528–536
doi: 10.1016/j.carbpol.2012.11.072
11 Gupta K C, Sahoo S. Graft copolymerization of acrylonitrile and ethylmethacrylate comonomers on cellulose using ceric ions. Biomacromolecules , 2001, 2(1): 239–247
doi: 10.1021/bm000102h
12 Sen G, Pal S. Polyacrylamide grafted carboxymethyltamarind (CMT-g-PAM): Development and application of a novel polymeric flocculant. Macromolecular Symposia , 2009, 277(1): 100–111
doi: 10.1002/masy.200950313
13 Huang R Y M, Immergut B, Immergu E H, Rapson W H. Grafting vinyl polymers onto cellulose by high energy radiation. I. High energy radiation-induced graft copolymerization of styrene onto cellulose. Journal of Polymer Science: Part A, General Papers , 2003, 1(4): 1257–1270
doi: 10.1002/pol.1963.100010416
14 Hebeish A, Mehta P C. Grafting of acrylonitrile to different cellulosic materials by high-energy radiation. Textile Research Journal , 1968, 38(10): 1070–1071
doi: 10.1177/004051756803801017
15 Geresh S, Gdalevsky G Y, Gilboa I, Voorspoels J, Remon J P, Kost J. Bioadhesive grafted cellulose copolymers as platforms for per oral drug delivery: A study of theophylline release. Journal of Controlled Release , 2004, 94(2-3): 391–399
doi: 10.1016/j.jconrel.2003.10.019
16 Shiraishi N, Williams J L, Stannett V. The radiation grafting of vinyl monomers to cotton fabrics. I. Methacrylic acid to terry cloth towelling. Radiation Physics and Chemistry , 1982, 19: 73–78
17 Sharma R K, Misra B N. Grafting onto wool. Polymer Bulletin , 1981, 6(3-4): 183–188
doi: 10.1007/BF00956286
18 Carenza M. Recent achievements in the use of radiation polymerization and grafting for biomedical applications. Radiation Physics and Chemistry , 1992, 39: 485–493
19 Wang J P, Chen Y Z, Zhang S J, Yu H Q. A chitosan-based flocculant prepared with gamma-irradiation-induced grafting. Bioresource Technology , 2008, 99(9): 3397–3402
doi: 10.1016/j.biortech.2007.08.014
20 Barsbay M, Guven O, Davis T P, Kowollik C B, Barner L. RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via γ-radiation. Polymer , 2009, 50(4): 973–982
doi: 10.1016/j.polymer.2008.12.027
21 Deng J, Wang L, Liu L, Yang W. Developments and new applications of UV-induced surface graft polymerizations. Progress in Polymer Science , 2009, 34(2): 156–193
doi: 10.1016/j.progpolymsci.2008.06.002
22 Wang J, Liang G, Zhao W, Lu S, Zhang Z. Studies on surface modification of UHMWPE fibers via UV initiated grafting. Applied Surface Science , 2006, 253(2): 668–673
doi: 10.1016/j.apsusc.2005.12.165
23 Hua H, Li N, Wu L, Zhong H, Wu G, Yuan Z, Lin X, Tang L. Anti-fouling ultrafiltration membrane prepared from polysulfone-graft-methyl acrylate copolymers by UV-induced grafting method. Journal of Environmental Sciences (China) , 2008, 20(5): 565–570
doi: 10.1016/S1001-0742(08)62095-1
24 Shanmugharaj A M, Kim J K, Ryu S H. Modification of rubber surface by UV surface grafting. Applied Surface Science , 2006, 252(16): 5714–5722
doi: 10.1016/j.apsusc.2005.07.069
25 Zhu Z, Kelley M J. Grafting onto poly(ethylene terephthalate) driven by 172 nm UV light. Applied Surface Science , 2005, 252(2): 303–310
doi: 10.1016/j.apsusc.2004.12.056
26 Deng J, Yang W. Grafting copolymerization of styrene and maleicanhydride binary monomer systems induced by UV irradiation. European Polymer Journal , 2005, 41(11): 2685–2692
doi: 10.1016/j.eurpolymj.2005.05.022
27 Thaker M D, Trivedi H C. Ultraviolet-radiation-induced graft copolymerization of methyl acrylate onto the sodium salt of partially carboxymethylated guar gum. Journal of Applied Polymer Science , 2005, 97(5): 1977–1986
doi: 10.1002/app.20988
28 Chen C, Li X, Li Z. Graft copolymerization of acrylamide onto the UV-Ray irradiated film of polyester-polyether. Chinese Journal of Polymer Science , 1988, 6: 1
29 Mishra S, Rani G U, Sen G. Microwave initiated synthesis and application of poly acrylic acid grafted carboxymethylcellulose. Carbohydrate Polymers , 2012, 87(3): 2255–2262
doi: 10.1016/j.carbpol.2011.10.057
30 Mishra S, Sen G. Microwave initiated synthesis of polymethylmethacrylate grafted guar (GG-g-PMMA), characterizations and application. International Journal of Biological Macromolecules , 2011, 48(4): 688–694
doi: 10.1016/j.ijbiomac.2011.02.013
31 Sen G, Mishra S, Jha U, Pal S. Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)—characterizations and application as matrix for controlled release of 5-amino salicylic acid. International Journal of Biological Macromolecules , 2010, 47(2): 164–170
doi: 10.1016/j.ijbiomac.2010.05.004
32 Sen G, Kumar R, Ghosh S, Pal S. A novel polymeric flocculant based on polyacrylamide grafted carboxymethylstarch. Carbohydrate Polymers , 2009, 77(4): 822–831
doi: 10.1016/j.carbpol.2009.03.007
33 Sen G, Singh R P, Sagar P. Microwave-initiated synthesis of polyacrylamide grafted sodium alginate: Synthesis and characterization. Journal of Applied Polymer Science , 2010, 115(1): 63–71
doi: 10.1002/app.30596
34 Sen G, Mishra S, Rani G U, Rani P, Prasad R. Microwave initiated synthesis of polyacrylamide grafted Psyllium and its application as a flocculent. International Journal of Biological Macromolecules , 2012, 50(2): 369–375
doi: 10.1016/j.ijbiomac.2011.12.014
35 Sen G, Pal S. Microwave initiated synthesis of polyacrylamide grafted carboxymethylstarch (CMS-g-PAM): Application as a novel matrix for sustained drug release. International Journal of Biological Macromolecules , 2009, 45(1): 48–55
doi: 10.1016/j.ijbiomac.2009.03.012
36 Mishra S, Sen G, Rani G U, Sinha S. Microwave assisted synthesis of polyacrylamide grafted agar (Ag-g-PAM) and its application as flocculant for wastewater treatment. International Journal of Biological Macromolecules , 2011, 49(4): 591–598
doi: 10.1016/j.ijbiomac.2011.06.015
37 Mishra S, Mukul A, Sen G, Jha U. Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment. International Journal of Biological Macromolecules , 2011, 48(1): 106–111
doi: 10.1016/j.ijbiomac.2010.10.004
38 Rani P, Sen G, Mishra S, Jha U. Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant. Carbohydrate Polymers , 2012, 89(1): 275–281
doi: 10.1016/j.carbpol.2012.03.009
39 Rani P, Mishra S, Sen G. Microwave based synthesis of polymethyl methacrylate grafted alginate: Its application as flocculant. Carbohydrate Polymers , 2013, 91(2): 686–692
doi: 10.1016/j.carbpol.2012.08.023
40 Sen G, Sharon A, Pal S. Grafted polysaccharides: smart materials of the future, their synthesis and applications (Chapter 05). USA: Wiley-Scrivener, 2011, 99-128
41 Tripathy T, Ranjan De B. Flocculation: A new way to treat the waste water. Journal of Physiological Sciences; JPS , 2006, 10: 93–127
42 Mc Dowall D J, Gupta B S, Stannnett V T. Grafting of vinyl monomers to cellulose by ceric ion initiation. Progress in Polymer Science , 1984, 10(1): 1–50
doi: 10.1016/0079-6700(84)90005-4
43 Singh J, Yadav L D S. Organic Synthesis. A pragati Prakadshan , 2008, 1–652
44 Odian G. Principles of polymerization (4th edition). New York: John Wiley &sons, 2004, 1-832
45 Nayak P L, Lenka S. Redox polymerization initiated by metal ions. Journal of macromolecule Science , Part C: Polymer review, 1980, 19(1): 83–134
46 Misra G S, Bajpai U D. Redox polymerization. Progress in Polymer Science , 1982, 8(1-2): 61–131
doi: 10.1016/0079-6700(82)90008-9
47 Temel O, Ismail C. Synthesis of block copolymers via redox polymerization process: A critical review. Iranian Polymer Journal , 2007, 16(8): 561–581
48 Ruehrwein R A, Ward D W. Mechanism of clay aggregation by poly electrolytes. Journal of Soil Science , 1952, 73(6): 485–492
doi: 10.1097/00010694-195206000-00007
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed