Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (3): 297-302   https://doi.org/10.1007/s11705-013-1346-1
  RESEARCH ARTICLE 本期目录
Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures
Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures
Qiang XIAO, Xiaodan TANG, Yefeng LIU, Yijun ZHONG, Weidong ZHU()
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
 全文: PDF(233 KB)   HTML
Abstract

A comparison study has been conducted on the strategies for synthesizing nanocrystalline Li2ZrO3 and K-doped Li2ZrO3 absorbents for CO2 capture at high temperatures, including solid-state and liquid-phase methods, citrate route, and starch-assisted sol-gel method combined with freeze-drying technique. The absorption properties, including uptake rate and absorption capacity, of synthesized absorbents were investigated by thermogravimetric analysis (TGA) at different CO2 partial pressures. The nanosized Li2ZrO3 crystals synthesized by the citrate route exhibit a faster uptake and a higher, nearly stoichiometric absorption capacity than those synthesized by the solid-state and liquid-phase methods. The doping of K into Li2ZrO3 can significantly improve the uptake rate of CO2, especially at low CO2 partial pressures. For the synthesis of K-doped Li2ZrO3, the citrate route has poor reproducibility and scalability, whereas the starch-assisted sol-gel method combined with freeze-drying technique is reproducible and easily scaled up, and the thus synthesized absorbents possess excellent CO2 capture properties.

Key wordsCO2 capture    Li2ZrO3    K-doped Li2ZrO3    citrate    starch    freeze-drying technique
收稿日期: 2012-12-02      出版日期: 2013-09-05
Corresponding Author(s): ZHU Weidong,Email:weidongzhu@zjnu.cn   
 引用本文:   
. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures[J]. Frontiers of Chemical Science and Engineering, 2013, 7(3): 297-302.
Qiang XIAO, Xiaodan TANG, Yefeng LIU, Yijun ZHONG, Weidong ZHU. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures. Front Chem Sci Eng, 2013, 7(3): 297-302.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1346-1
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I3/297
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Moulijn J A, Makkee M, van Diepen A. Chemical Process Technology. New York: Wiley, 2001, 131–142
2 Hufton J R, Mayorga S, Sircar S. Sorption-enhanced reaction process for hydrogen production. AIChE Journal. American Institute of Chemical Engineers , 1999, 45(2): 248-256
doi: 10.1002/aic.690450205
3 Ochoa-Fernandez E, Haugen G, Zhao T, Ronning M, Aartun I, Borresen B, Rytter E, Ronnekleiv M, Chen D. Process design simulation of H2 production by sorption enhanced steam methane reforming: evaluation of potential CO2 acceptors. Green Chemistry , 2007, 9(6): 654-662
doi: 10.1039/b614270b
4 Carvill B T, Hufton J R, Anand M, Sircar S. Sorption-enhanced reaction process. AIChE Journal. American Institute of Chemical Engineers , 1996, 42(10): 2765-2772
doi: 10.1002/aic.690421008
5 Lee K B, Beaver M G, Caram H S, Sircar S. Reversible chemisorbents for carbon dioxide and their potential applications. Industrial & Engineering Chemistry Research , 2008, 47(21): 8048-8062
doi: 10.1021/ie800795y
6 Nakagawa K, Ohashi T. A novel method of CO2 capture from high temperature gases. Journal of the Electrochemical Society , 1998, 145(4): 1344-1346
doi: 10.1149/1.1838462
7 Nakagawa K, Ohashi T. A reversible change between lithium zirconate and zirconia in molten carbonate. Electrochemistry , 1999, 67(6): 618-621
8 Martínez-dlCruz L, Pfeiffer H, 0. Pfeiffer H. Toward understanding the effect of water sorption on lithium zirconate (Li2ZrO3) during its carbonation process at low temperatures. Journal of Physical Chemistry C , 2010, 114(20): 9453-9458
doi: 10.1021/jp1020966
9 Nair B N, Yamaguchi T, Kawamura H, Nakao S I, Nakagawa K. Processing of lithium zirconate for applications in carbon dioxide separation: Structure and properties of the powders. Journal of the American Ceramic Society , 2004, 87(1): 68-74
doi: 10.1111/j.1551-2916.2004.00068.x
10 Ida J, Lin Y S. Mechanism of high-temperature CO2 sorption on lithium zirconate. Environmental Science & Technology , 2003, 37(9): 1999-2004
doi: 10.1021/es0259032
11 Xiong R T, Ida J, Lin Y S. Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate. Chemical Engineering Science , 2003, 58(19): 4377-4385
doi: 10.1016/S0009-2509(03)00319-1
12 Yi K B, Eriksen D O. Low temperature liquid state synthesis of lithium zirconate and its characteristics as a CO2 sorbent. Separation Science and Technology , 2006, 41(2): 283-296
doi: 10.1080/01496390500496884
13 Ochoa-Fernandez E, Ronning M, Grande T, Chen D. Nanocrystalline lithium zirconate with improved kinetics for high-temperature CO2 capture. Chemistry of Materials , 2006, 18(6): 1383-1385
doi: 10.1021/cm052075d
14 Ochoa-Fernandez E, Ronning M, Grande T, Chen D. Synthesis and CO2 capture properties of nanocrystalline lithium zirconate. Chemistry of Materials , 2006, 18(25): 6037-6046
doi: 10.1021/cm061515d
15 Qi X, Lin Y S, Swartz S L. Electric transport and oxygen permeation properties of lanthanum cobaltite membranes synthesized by different methods. Industrial & Engineering Chemistry Research , 2000, 39(3): 646-653
doi: 10.1021/ie990675e
16 Xiao Q, Liu Y F, Zhong Y J, Zhu W D. A citrate sol-gel method to synthesize Li2ZrO3 nanocrystals with improved CO2 capture properties. Journal of Materials Chemistry , 2011, 21(11): 3838-3842
doi: 10.1039/c0jm03243c
17 Xiao Q, Tang X D, Liu Y F, Zhong Y J, Zhu W D. Citrate route to prepare K-doped Li2ZrO3 sorbents with excellent CO2 capture properties. Chemical Engineering Journal , 2011, 174(1): 231-235
doi: 10.1016/j.cej.2011.09.005
18 Xiao Q, Tang X D, Zhong Y J, Zhu W D. A facile starch-assisted sol-gel method to synthesize K-doped Li2ZrO3 sorbents with excellent CO2 capture properties. Journal of the American Ceramic Society , 2012, 95(5): 1544-1548
doi: 10.1111/j.1551-2916.2012.05090.x
19 Ochoa-Fernandez E, Ronning M, Yu X F, Grande T, Chen D. Compositional effects of nanocrystalline lithium zirconate on its CO2 capture properties. Industrial & Engineering Chemistry Research , 2008, 47(2): 434-442
doi: 10.1021/ie0705150
20 Ida J, Xiong R, Lin Y S. Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Separation and Purification Technology , 2004, 36(1): 41-51
doi: 10.1016/S1383-5866(03)00151-5
21 Fauth D J, Frommell E A, Hoffman J S, Reasbeck R P, Pennline H W. Eutectic salt promoted lithium zirconate: Novel high temperature sorbent for CO2 capture. Fuel Processing Technology , 2005, 86(14-15): 1503-1521
doi: 10.1016/j.fuproc.2005.01.012
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed