Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (4): 428-436   https://doi.org/10.1007/s11705-013-1358-x
  RESEARCH ARTICLE 本期目录
Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies
Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies
Jasmin Shah(), M. Rasul Jan, Attaul Haq, Younas Khan
Institute of Chemical Sciences, University of Peshawar, Peshawar Pakistan
 全文: PDF(172 KB)   HTML
Abstract

An adsorption study of Rhodamine B (RB) dye from aqueous solutions was carried out using walnut shells pretreated by different methods. In addition to the effects of the pretreatment, the effects of various parameters like pH, adsorbent dose, contact time, initial dye concentration and temperature on the adsorption of RB was studied. The adsorption process was highly pH dependent and a maximum adsorption was achieved at pH 3.0. The best fit for the rates of dye adsorption was a pseudo-second-order kinetic model with good correlation coefficients (R2>0.99). Langmuir isotherms were used to determine that the maximum loading capacity of the different walnut shells and the RB capacities ranged from 1.451–2.292 mg·g-1. The dye adsorption was also evaluated thermodynamically. Positive standard enthalpy (?H°) values were obtained indicating that the RB adsorption process is endothermic as well as ?G° and ?S° values showed that adsorption process is spontaneous with an increased randomness at the solid-liquid interface. Desorption studies were carried out to explore the feasibility of regenerating the used walnut shells and it was found that 97.71%–99.17% of the retained RB was recovered with 0.1 mol?L-1 NaOH solution. The walnut shells were also successfully used to remove RB from industrial effluents.

Key wordsRhodamine B    walnut shell adsorption    kinetics    isotherms    regeneration
收稿日期: 2013-06-03      出版日期: 2013-12-05
Corresponding Author(s): Shah Jasmin,Email:jasminshah2001@yahoo.com   
 引用本文:   
. Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies[J]. Frontiers of Chemical Science and Engineering, 2013, 7(4): 428-436.
Jasmin Shah, M. Rasul Jan, Attaul Haq, Younas Khan. Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies. Front Chem Sci Eng, 2013, 7(4): 428-436.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1358-x
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I4/428
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Sorbentqe /(mg·g-1) (exp)Pseudo-first- order kinetic modelPseudo-second- order kinetic modeIntraparticle diffusion modelElovich model
K1 /min-1qe /(mg? g-) 1R2K2 /(g·mg-1 min-1)qe/(mg·g-1)R2Kint /(mg·g-1 min1/2)C /(mg·g-1)R2α /(mg·g-1·min-1)β /(g·mg-1R2
WS1409.330.036470.320.98027.40E-5500.000.999533.5177.270.978337.900.00860.9981
WS2362.400.027117.500.91572.46E-4384.610.997417.91182.110.8443183.640.0150.9104
WS3334.430.052575.430.92968.95E-5416.660.992126.5568.980.959735.510.0100.9798
Tab.1  
Fig.6  
Fig.7  
AdsorbentFreundlich modelLangmuir model
KF /(mg·g-1)n1/nR2R2KL /(L·g-1)Q0 /(mg·g-1)R2
WS10.4771.9150.5220.99390.99390.5092.2920.9807
WS20.6622.4810.4030.97120.97120.3012.1970.9904
WS30.2572.0830.4800.98460.98460.1851.5410.9627
Tab.2  
Fig.8  
Adsorbent-?G°/(kJ·mol-1)?H° /(kJ mol-1)?S° /(kJ·K-1·mol-1)
313 K323 K333 K343 K353 K
WS134.22635.84837.10839.07440.67116.1440.160
WS239.52240.89842.80244.36645.79610.6990.160
WS324.89226.63227.58228.77729.67011.7480.117
Tab.3  
RB (μg added)RB (μg eluted)desorption/%
10099.17±0.8899.17
300297.34±0.9299.11
500488.59±1.2097.71
Tab.4  
Industryμg before adsorptionμg after adsorptionRemoval/%
Sample F12000.000100
Sample F22500.000100
Sample F3200.000100
Sample F4400.000100
Tab.5  
1 Laasri L, Elamrani M K, Cherkaoui O. Removal of two cationic dyes from a textile effluent by filtration-adsorption on wood sawdust. Environmental Science and Pollution Research International , 2007, 14(4): 237-240
doi: 10.1065/espr2006.08.331
2 Hamdaoui O. Dynamic sorption of methylene blue by cedar sawdust and crushed brick in fixed bed columns. Journal of Hazardous Materials , 2006, 38(2): 293-303
doi: 10.1016/j.jhazmat.2006.04.061
3 Hameed B H, Din A T M, Ahmad A L. Adsorption of methylene blue onto bamboo based activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials , 2007, 14(3): 819-825
doi: 10.1016/j.jhazmat.2006.07.049
4 Senturk H B, Ozdes D, Duran C. Biosorption of Rhodamine 6G from aqueous solutions onto almond shell (Prunus dulcis) as a low cost biosorbent. Desalination , 2010, 252(1-3): 81-87
doi: 10.1016/j.desal.2009.10.021
5 Robinson T, McMullan G, Marchant R, Poonam N. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology , 2001, 77(3): 247-255
doi: 10.1016/S0960-8524(00)00080-8
6 Figueiredo S A, Boaventura R A, Loureiro J M. Color removal with natural adsorbents: Modeling, simulation and experimental. Separation and Purification Technology , 2000, 20(1): 129-141
doi: 10.1016/S1383-5866(00)00068-X
7 Vilar V J P, Botelho C M S, Boaventura R A R. Methylene blue adsorption by algal biomass based materials: Biosorbents characterization and process behavior. Journal of Hazardous Materials , 2007, 147(1-2): 120-132
doi: 10.1016/j.jhazmat.2006.12.055
8 Demirbas E, Kobya M, Sulak M T. Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon. Bioresource Technology , 2008, 99(13): 5368-5373
doi: 10.1016/j.biortech.2007.11.019
9 Guo Y, Zhao J, Zhang H, Yang S, Qi J, Wang Z, Xu H. Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions. Dyes and Pigments , 2005, 66(2): 123-128
doi: 10.1016/j.dyepig.2004.09.014
10 Khattri S D, Singh M K. Color removal from synthetic dye wastewater using a biosorbent. Water, Air, and Soil Pollution , 2000, 120(3/4): 283-294
doi: 10.1023/A:1005207803041
11 McKay G, Porter J F, Prasad G R. The removal of basic dyes aqueous solution by adsorption on low-cost materials. Water, Air, and Soil Pollution , 1999, 114(3/4): 423-438
doi: 10.1023/A:1005197308228
12 Mittal A, Krishnan L, Gupta V K. Removal and recovery of malachite green from wastewater using an agricultural waste material, de-oiled soya. Separation and Purification Technology , 2005, 43(2): 125-133
doi: 10.1016/j.seppur.2004.10.010
13 Hameed B H, Hakimi H. Utilization of durian (Durio zibethinus Murray) peel as low cost sorbent for the removal of acid dye from aqueous solutions. Biochemical Engineering Journal , 2008, 39(2): 338-343
doi: 10.1016/j.bej.2007.10.005
14 Ahmad A A, Hameed B H, Aziz N. Adsorption of direct dye on palm ash: Kinetic and equilibrium modeling. Journal of Hazardous Materials , 2007, 141(1): 70-76
doi: 10.1016/j.jhazmat.2006.06.094
15 Hameed B H, El-Khaiary M I. Sorption kinetics and isotherm studies of a cationic dye using agricultural waste: Broad bean peels. Journal of Hazardous Materials , 2008, 154(1-3): 639-648
doi: 10.1016/j.jhazmat.2007.10.081
16 Serencam H, Gundogdu A, Uygur Y, Kemer B, Bulut V N, Duran C, Soylak M, Tufekci M. Removal of cadmium from aqueous solution by Nordmann fir (Abies nordmanniana (Stev.) Spach. Subsp. nordmanniana) leaves. Bioresource Technology , 2008, 99(6): 1992-2000
doi: 10.1016/j.biortech.2007.03.021
17 Hasar H. Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk. Journal of Hazardous Materials , 2003, 97(1-3): 49-57
doi: 10.1016/S0304-3894(02)00237-6
18 Pehlivan E, Altun T. Bioadsorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell. Journal of Hazardous Materials , 2008, 155(1-2): 378-384
doi: 10.1016/j.jhazmat.2007.11.071
19 Altun T, Pehlivan E. Removal of Cr(VI) from aqueous solutions by modified walnut shells. Food Chemistry , 2012, 132(2): 693-700
doi: 10.1016/j.foodchem.2011.10.099
20 Al-Rashed S M, Al-Gaid A A. Kinetic and thermodynamic studies on the adsorption behavior of Rhodamine B dye on Duolite C-20 resin. Journal of Saudi Chemical Society , 2012, 16(2): 209-215
doi: 10.1016/j.jscs.2011.01.002
21 Wang J, Wang D, Zhang G, Guo Y, Liu J. Adsorption of Rhodamine B from aqueous solution onto heat-activated sepiolite. Wuhan University Journal of Natural Sciences , 2013, 18(3): 219-225
doi: 10.1007/s11859-013-0918-8
22 Rasalingam S, Peng R, Koodali R T. An investigation into the effect of porosities on the adsorption of Rhodamine B using titania-silica mixed oxide xerogels. Journal of Environmental Management , 2013, 128: 530-539
doi: 10.1016/j.jenvman.2013.06.014
23 Britton H T S. “Hydrogen Ions” Monographs on Applied Chemistry. New York , 1943, 313
24 Anandkumar J, Mandal B. Adsorption of chromium (VI) and Rhodamine B by surface modified tannery waste: Kinetic, mechanistic and thermodynamic studies. Journal of Hazardous Materials , 2011, 186(2-3): 1088-1096
doi: 10.1016/j.jhazmat.2010.11.104
25 Selvan P P. Preethi Sm, Basakaralingan P, Thinakaran N, Sivasamy A, Sivanesan S. Removal of Rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. Journal of Hazardous Materials , 2008, 155: 39-44
doi: 10.1016/j.jhazmat.2007.11.025
26 Kyazs G Z, Lazaridis N K, Mitropoulos A C. Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: Equilibrium, reuse and thermodynamic approach. Chemical Engineering Journal , 2012, 189-190(1): 148-159
doi: 10.1016/j.cej.2012.02.045
27 Noreen S, Bhatti H N, Nausheen S, Sadaf S, Ashfaq M. Batch and fixed bed adsorption study for the removal of Drimarine Black CL-B dye from aqueous solution using a lignocellulosic waste: A cost affective adsorbent. Industrial Crops and Products , 2013, 50(10): 568-579
doi: 10.1016/j.indcrop.2013.07.065
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed