Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2014, Vol. 8 Issue (1): 104-113   https://doi.org/10.1007/s11705-014-1406-1
  RESEARCH ARTICLE 本期目录
Particle formation of hydroxyapatite precursor containing two components in a spray pyrolysis process
Particle formation of hydroxyapatite precursor containing two components in a spray pyrolysis process
W. Widiyastuti1(), Adhi Setiawan2, Sugeng Winardi1, Tantular Nurtono1, Heru Setyawan1
1. Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia; 2. Politeknik Perkapalan Negeri Surabaya, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
 全文: PDF(701 KB)   HTML
Abstract

The particle formation mechanism of hydroxyapatite precursor containing two components, Ca(OOCCH3)2 and (NH4)2HPO4 with a ratio of Ca/P= 1.67, in a spray pyrolysis process has been studied by computational fluid dynamics (CFD) simulation on the transfer of heat and mass from droplets to the surrounding media. The focus included the evaporation of the solvent in the droplets, a second evaporation due to crust formation, the decomposition reaction of each component of the precursor, and a solid-state reaction that included the kinetic parameters of the precursor regarding its two components that formed the hydroxyapatite product. The rate of evaporation and the reacted fraction of the precursor both increased with temperature. The predicted average size of the hydroxyapatite particles agreed well with the experimental results. Therefore, the selected models were also suitable for predicting the average size of particles that contain two components in the precursor solution.

Key wordsdroplet    hydroxyapatite particle    CFD    tubular furnace    spray pyrolysis
收稿日期: 2013-07-28      出版日期: 2014-03-05
Corresponding Author(s): Widiyastuti W.,Email:widi@chem-eng.its.ac.id   
 引用本文:   
. Particle formation of hydroxyapatite precursor containing two components in a spray pyrolysis process[J]. Frontiers of Chemical Science and Engineering, 2014, 8(1): 104-113.
W. Widiyastuti, Adhi Setiawan, Sugeng Winardi, Tantular Nurtono, Heru Setyawan. Particle formation of hydroxyapatite precursor containing two components in a spray pyrolysis process. Front Chem Sci Eng, 2014, 8(1): 104-113.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-014-1406-1
https://academic.hep.com.cn/fcse/CN/Y2014/V8/I1/104
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
1 Ortega J, Kodas T T. Control of particle morphology during multicomponent metal oxide powder generation by spray pyrolysis. Journal of Aerosol Science , 1992, 23(Suppl. 1): S253-S256
doi: 10.1016/0021-8502(92)90397-E
2 Okuyama K, Lenggoro I W. Preparation of nanoparticles via spray route. Chemical Engineering Science , 2003, 58(3-6): 537-547
doi: 10.1016/S0009-2509(02)00578-X
3 Jain S, Skamser D J, Kodas T T. Morphology of single-component particles produced by spray pyrolysis. Aerosol Science and Technology , 1997, 27(5): 575-590
doi: 10.1080/02786829708965498
4 Reuge N, Caussat B, Joffin N, Dexpert-ghys J, Verelst M, Dexpert H. Modeling of spray pyrolysis— why are the synthesized Y2O3 microparticles hollow? AIChE Journal. American Institute of Chemical Engineers , 2008, 54(2): 394-405
doi: 10.1002/aic.11375
5 Gurav A, Kodas T T, Pluym T, Xiong Y. Aerosol processing of materials. Aerosol Science and Technology , 1993, 19(4): 411-452
doi: 10.1080/02786829308959650
6 Jayanthi G V, Zhang S C, Messing G L. Modeling of solid particle formation during solution aerosol thermolysis. Aerosol Science and Technology , 1993, 19(4): 478-490
doi: 10.1080/02786829308959653
7 Reuge N, Caussat B. A dimensionless study of the evaporation and drying stages in spray pyrolysis. Computers & Chemical Engineering , 2007, 31(9): 1088-1099
doi: 10.1016/j.compchemeng.2006.09.011
8 Widiyastuti W, Wang W N, Lenggoro I W, Iskandar F, Okuyama K. Simulation and experimental study of spray pyrolysis of polydispersed droplets. Journal of Materials Research , 2007, 22(7): 1888-1898
doi: 10.1557/jmr.2007.0235
9 Handscomb C, Kraft M, Bayly A. A new model for the drying of droplets containing suspended solids after shell formation. Chemical Engineering Science , 2009, 64(2): 228-246
doi: 10.1016/j.ces.2008.10.019
10 Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomaterialia , 2011, 7(7): 2769-2781
doi: 10.1016/j.actbio.2011.03.019
11 Zhang L, Webster T J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today , 2009, 4(1): 66-80
doi: 10.1016/j.nantod.2008.10.014
12 Cho J S, Rhee S H. Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of calcium phosphate solution containing polyethylene glycol. Journal of the European Ceramic Society , 2013, 33(2): 233-241
doi: 10.1016/j.jeurceramsoc.2012.08.029
13 An G H, Wang H J, Kim B H, Jeong Y G, Choa Y H. An G H, Wang H J, Kim B H, Jeong Y G, Choa Y H. Fabrication and characterization of a hydroxyapatite nanopowder by ultrasonic spray pyrolysis with salt-assisted decomposition. Materials Science and Engineering A , 2007, 449-451: 821-824
doi: 10.1016/j.msea.2006.02.436
14 Itatani K, Abe M, Umeda T, Davies I J, Koda S. Morphological and microstructural changes during the heating of spherical calcium orthophosphate agglomerates prepared by spray pyrolysis. China Particuology , 2004, 2(5): 200-206
doi: 10.1016/S1672-2515(07)60059-1
15 Trommer R M, Santos L A, Bergmann C P. Nanostructured hydroxyapatite powders produced by a flame-based technique. Materials Science and Engineering C , 2009, 29(6): 1770-1775
doi: 10.1016/j.msec.2009.02.006
16 Rajan R, Pandit A. Correlation to predict droplet size in ultrasonic atomization. Ultrasonics , 2001, 39(4): 235-255
doi: 10.1016/S0041-624X(01)00054-3
17 Ansys Inc. Ansys Fluent 13.0 Theory Guide. USA , 2010
18 Luijten C, Bosschaart K, Van Dongen M. A new method for determining binary diffusion coefficients in dilute condensable vapors. International Journal of Heat and Mass Transfer , 1997, 40(15): 3497-3502
doi: 10.1016/S0017-9310(97)00021-5
19 Poling B E, Prausnitz J M, O'Connel J P. The Properties of Gas and Liquids. New York: Mc. Graw-Hill Inc., 2001
20 Ne?i? S, Vodnik J. Kinetics of droplet evaporation. Chemical Engineering Science , 1991, 46(2): 527-537
doi: 10.1016/0009-2509(91)80013-O
21 Jalota S, Tas A C, Bhaduri S B. Synthesis of HA-seeded TTCP (Ca4(PO4)2O) powders at 1230 °C from Ca(CH3COO)2.H2O and NH4H2PO4. Journal of the American Ceramic Society , 2005, 88(12): 3353-3360
doi: 10.1111/j.1551-2916.2005.00623.x
22 Kissinger H E. Reaction kinetics in differential thermal analysis. Analytical Chemistry , 1957, 29(11): 1702-1706
doi: 10.1021/ac60131a045
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed