Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2014, Vol. 8 Issue (1): 87-94   https://doi.org/10.1007/s11705-014-1410-5
  RESEARCH ARTICLE 本期目录
Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate
Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate
Zekai ZHANG(), Zhijian KONG, Huayan LIU, Yinfei CHEN
College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF(692 KB)   HTML
Abstract

To improve their thermal stability, La0.8Sr0.2MnO3 cordierite monoliths are washcoated with mayenite, which is a novel Al-based material with the crystal structure of 12MO·7Al2O3 (M= Ca, Sr). The monoliths are characterized by means of nitrogen adsorption/desorption, scanning electron microscopy, and X-ray diffraction. Catalytic performances of the monoliths are tested for methyl methacrylate combustion. The results show that mayenite obviously improves both the physic-chemical properties and the catalytic performance of the monoliths. Because mayenite improves the dispersity of La0.8Sr0.2MnO3 and also prevents the interaction between La0.8Sr0.2MnO3 and cordierite or γ-Al2O3, both crystal structure and surface morphology of La0.8Sr0.2MnO3 phase can thereby be stable on the mayenite surface even at high temperature up to 1050 oC. Under the given reaction conditions, La0.8Sr0.2MnO3 monolith washcoated with 12SrO·7Al2O3 shows the best catalytic activity for methyl methacrylate combustion among all the tested monoliths.

Key wordsmayenite    perovskite    catalytic combustion    methyl methacrylate    monolith
收稿日期: 2013-10-12      出版日期: 2014-03-05
Corresponding Author(s): ZHANG Zekai,Email:zzk@zjut.edu.cn   
 引用本文:   
. Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate[J]. Frontiers of Chemical Science and Engineering, 2014, 8(1): 87-94.
Zekai ZHANG, Zhijian KONG, Huayan LIU, Yinfei CHEN. Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate. Front Chem Sci Eng, 2014, 8(1): 87-94.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-014-1410-5
https://academic.hep.com.cn/fcse/CN/Y2014/V8/I1/87
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 Pe?a M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews , 2001, 101(7): 1981–2017
doi: 10.1021/cr980129f
2 Misono M. A view on the future of mixed oxide catalysts: The case of heteropolyacids (polyoxometalates) and perovskites. Catalysis Today , 2005, 100(1): 95–100
doi: 10.1016/j.cattod.2004.12.010
3 Dupont V, Moallemi F, Williams A, Zhang S H. Combustion of methane in catalytic honeycomb monolith burners. International Journal of Energy Research , 2000, 24(13): 1181–1201
doi: 10.1002/1099-114X(20001025)24:13<1181::AID-ER669>3.0.CO;2-Y
4 Avila P, Montes M, Miró E E. Monolithic reactors for environmental applications: A review on preparation technologies. Chemical Engineering Journal , 2005, 109(1): 11–36
doi: 10.1016/j.cej.2005.02.025
5 Cimino S, Colonna S, de Rossi S, Faticanti M, Lisi L, Pettiti I, Porta P. Methane combustion and CO oxidation on zirconia-supported La, Mn oxides and LaMnO3 Perovskite. Journal of Catalysis , 2002, 205(2): 309–317
doi: 10.1006/jcat.2001.3441
6 Cimino S, Pirone R, Russo G. Thermal stability of perovskite-based monolithic reactors in the catalytic combustion of methane. Industrial & Engineering Chemistry Research , 2001, 40(1): 80–85
doi: 10.1021/ie000392i
7 Cimino S, Lisi L, Pirone R, Russo G, Turco M. Methane combustion on perovskites-based structured catalysts. Catalysis Today , 2000, 59(1): 19–31
doi: 10.1016/S0920-5861(00)00269-8
8 Stephan K, Hackenberger M, Kie?ling D, Wendt G. Supported perovskite-type oxide catalysts for the total oxidation of chlorinated hydrocarbons. Catalysis Today , 1999, 54(1): 23–30
doi: 10.1016/S0920-5861(99)00164-9
9 Alifanti M, Florea M, Parvulescu V I. Ceria-based oxides as supports for LaCoO3 perovskite catalysts for total oxidation of VOC. Applied Catalysis B: Environmental , 2007, 70(3): 400–405
doi: 10.1016/j.apcatb.2005.10.037
10 Yin F, Ji S, Chen B, Zhao L, Liu H, Li C. Preparation and characterization of LaFe1-xMgxO3/Al2O3/FeCrAl: Catalytic properties in methane combustion. Applied Catalysis B: Environmental , 2006, 66(2): 265–273
doi: 10.1016/j.apcatb.2006.03.017
11 Fabbrini L, Rossetti I, Forni L. Effect of primer on honeycomb-supported La0.9Ce0.1CoO3 perovskite for methane catalytic flameless combustion. Applied Catalysis B: Environmental , 2003, 44(1): 107–116
doi: 10.1016/S0926-3373(03)00025-0
12 Arendt E, Maione A, Klisinska A, Sanz O, Montes M, Suarez S, Blanco J, Ruiz P. Structuration of LaMnO3 perovskite catalysts on ceramic and metallic monoliths: Physico-chemical characterisation and catalytic activity in methane combustion. Applied Catalysis A, General , 2008, 339(1): 1–14
doi: 10.1016/j.apcata.2008.01.016
13 Zou H, Ge X, Shen J. Preparation and catalytic properties of solid base catalysts I. Metal Oxides. Thermochimica Acta , 2003, 397(1): 81–86
doi: 10.1016/S0040-6031(02)00329-5
14 Yamamoto T, Hatsui T, Matsuyama T, Tanaka T, Funabiki T. Structures and acid-base properties of La/Al2O3 role of La addition to enhance thermal stability of γ-Al2O3. Chemistry of Materials , 2003, 15(25): 4830–4840
doi: 10.1021/cm034732c
15 Yamamoto T, Tanaka T, Matsuyama T, Funabiki T, Yoshida S. Structural analysis of La/Al2O3 catalysts by La K-edge XAFS. Journal of Synchrotron Radiation , 2001, 8(2): 634–636
doi: 10.1107/S0909049500017106
16 Zwinkels M F M, Haussner O, Menon P G, J?r?s S. Preparation and characterization of LaCrO3 and Cr2O3 methane combustion catalysts supported on LaAl11O18 and Al2O3-coated monoliths. Catalysis Today , 1999, 47(1): 73–82
doi: 10.1016/S0920-5861(98)00284-3
17 Hayashi K, Matsuishi S, Hirano M, Hosono H. Formation of oxygen radicals in 12CaO·7Al2O3: Instability of extraframework oxide ions and uptake of oxygen gas. Journal of Physical Chemistry B , 2004, 108(26): 8920–8925
doi: 10.1021/jp037916n
18 Li C, Hirabayashi D, Suzuki K. A crucial role of O2- and O22- on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33. Applied Catalysis B: Environmental , 2009, 88(3): 351–360
doi: 10.1016/j.apcatb.2008.11.004
19 Yang S, Kondo J, Hayashi K, Hirano M, Domen K, Hosono H. Formation and desorption of oxygen species in nanoporous crystal 12CaO·7Al2O3. Chemistry of Materials , 2004, 16(1): 104–110
doi: 10.1021/cm034755r
20 Hayashi K, Ueda N, Matsuishi S, Hirano M, Kamiya T, Hosono H. Solid state syntheses of 12SrO·7Al2O3 and formation of high density oxygen radical anions, O- and O2-. Chemistry of Materials , 2008, 20(19): 5987–5996
doi: 10.1021/cm800666p
21 Banús E D, Milt V G, Miró E E, Ulla M A. Structured catalyst for the catalytic combustion of soot: Co, Ba, K/ZrO2 supported on Al2O3 foam. Applied Catalysis A, General , 2009, 362(1): 129–138
doi: 10.1016/j.apcata.2009.04.035
22 Stutz M J, Poulikakos D. Optimum washcoat thickness of a monolith reactor for syngas production by partial oxidation of methane. Chemical Engineering Science , 2008, 63(7): 1761–1770
doi: 10.1016/j.ces.2007.11.032
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed