1. Department of Chemical Engineering, Curtin University, Perth WA 6845, Australia; 2. School of Chemical Engineering, The University of Adelaide, SA5005, Australia
Magnetic Fe3O4 and mesoporous silica core-shell nanospheres with tunable size from 110–800 nm were synthesized via a one step self-assembly method. The morphological, structural, textural, and magnetic properties were well-characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N2 adsorption-desorption and magnetometer. These nanocomposites, which possess high surface area, large pore volume and well-defined pore size, exhibit two dimensional hexagonal (P6mm) mesostructures. Interestingly, magnetic core and mesoporous silica shell nanocomposites with large void pore (20 nm) on the shell were generated by increasing the ratio of ethanol/water. Additionally, the obtained nanocomposites combined magnetization response and large void pore, implying the possibility of applications in drug/gene targeting delivery. The cell internalization capacity of NH2-functionalized nanocomposites in the case of cancer cells (HeLa cells) was exemplified to demonstrate their nano-medicine application.
Corresponding Author(s):
LIU Shaomin,Email:shaomin.liu@curtin.edu.au; QIAO Shi Zhang,Email:s.qiao@adelaide.edu.au
引用本文:
. Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore[J]. Frontiers of Chemical Science and Engineering, 2014, 8(1): 114-122.
Tingting LIU, Lihong LIU, Jian LIU, Shaomin LIU, Shi Zhang QIAO. Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore. Front Chem Sci Eng, 2014, 8(1): 114-122.
Lu A H, Schmidt W, Matoussevitch N, Bonnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schuth F. Nanoengineering of a magnetically separable hydrogenation catalyst. Angewandte Chemie International Edition , 2004, 43(33): 4303–4306 doi: 10.1002/anie.200454222
2
Liu J, Qiao S Z, Hu Q H, Lu G Q. Magnetic nanocomposites with mesoporous structures: Synthesis and applications. Small , 2011, 7(4): 425–443 doi: 10.1002/smll.201001402
3
Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán L M. Recent progress on silica coating of nanoparticles and related nanomaterials. Advanced Materials , 2010, 22(11): 1182–1195 doi: 10.1002/adma.200901263
4
Wu P G, Zhu J H, Xu Z H. Template-assisted synthesis of mesoporous magnetic nanocomposite particles. Advanced Functional Materials , 2004, 14(4): 345–351 doi: 10.1002/adfm.200305455
5
Yi D K, Lee S S, Papaefthymiou G C, Ying J Y. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chemistry of Materials , 2006, 18(3): 614–619 doi: 10.1021/cm0512979
6
Kim J, Lee J E, Lee J, Yu J H, Kim B C, An K, Hwang Y, Shin C H, Park J G, Hyeon T. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. Journal of the American Chemical Society , 2006, 128(3): 688–689 doi: 10.1021/ja0565875
7
Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song I C, Moon W K, Hyeon T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angewandte Chemie International Edition , 2008, 47(44): 8438–8441 doi: 10.1002/anie.200802469
8
Liong X, Lu J, Kovochich M, Xia T, Ruehm S G, Nel A E, Tamanoi F, Zink J I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano , 2008, 2(5): 889–896 doi: 10.1021/nn800072t
9
Zhang L, Qiao S Z, Jin Y G, Yang H G, Budihartono S, Stahr F, Yan Z F, Wang X L, Hao Z P, Lu G Q. Fabrication and size-selective bioseparation of magnetic silica nanospheres with highly ordered periodic mesostructure. Advanced Functional Materials , 2008, 18(20): 3203–3212 doi: 10.1002/adfm.200800363
10
Lin Y S, Haynes C L. Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. Chemistry of Materials , 2009, 21(17): 3979–3986 doi: 10.1021/cm901259n
11
Ruiz-Hernandez E, Lopez-Noriega A, Arcos D, Izquierdo-Barba I, Terasaki O, Vallet-Regi M. Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting. Chemistry of Materials , 2007, 19(14): 3455–3463 doi: 10.1021/cm0705789
12
Zhang L, Zhang F, Dong W F, Song J F, Huo Q S, Sun H B. Magnetic-mesoporous Janus nanoparticles. Chemical Communications , 2011, 47(4): 1225–1227 doi: 10.1039/c0cc03946b
13
Zhao Y, Lin L N, Lu Y, Gao H L, Chen S F, Yang P, Yu S H. Synthesis of tunable theranostic Fe3O4@mesoporous silica nanospheres for biomedical applications. Advanced Healthcare Materials , 2012, 1(3): 327–331 doi: 10.1002/adhm.201200005
14
Liu Q, Zhang J X, Xia W L, Gu H C. Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles. Nanoscale , 2012, 4(11): 3415–3421 doi: 10.1039/c2nr30352c
15
Liu J, Wang B, Hartono S B, Liu T T, Kantharidis P, Middelberg A P J, Lu G Q, He L Z, Qiao S Z. Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake. Biomaterials , 2012, 33(3): 970–978 doi: 10.1016/j.biomaterials.2011.10.001
16
Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews , 2007, 107(7): 2821–2860 doi: 10.1021/cr068020s
17
Deng Y, Qi D, Deng C, Zhang X, Zhao D Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society , 2008, 130(1): 28–29 doi: 10.1021/ja0777584
18
Wang P, Shi Q H, Shi Y F, Clark K K, Stucky G D, Keller A A. Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination. Journal of the American Chemical Society , 2009, 131(1): 182–188 doi: 10.1021/ja806556a
19
Hartono S B, Gu W Y, Kleitz F, Liu J, He L Z, Middelberg A P J, Yu C Z, Lu G Q, Qiao S Z. Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. ACS Nano , 2012, 6(3): 2104–2117 doi: 10.1021/nn2039643
20
Na H K, Kim M H, Park K, Ryoo R S, Lee K E, Jeon H, Ryoo R, Hyeon C B, Min D H. Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small , 2012, 8(11): 1752–1761 doi: 10.1002/smll.201200028
21
Huang X L, Li L L, Liu T L, Hao N J, Liu H Y, Chen D, Tang F Q. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano , 2011, 5(7): 5390–5399 doi: 10.1021/nn200365a
22
Zhao W R, Zhang H T, Chang S, Gu J L, Li Y S, Li L, Shi J L. An organosilane route to mesoporous silica nanoparticles with tunable particle and pore sizes and their anticancer drug delivery behavior. RSC Advances , 2012, 2(12): 5105–5107 doi: 10.1039/c2ra20166f
23
Chen Z T, Niu D C, Li Y S, Shi J L. One-step approach to synthesize hollow mesoporous silica spheres co-templated by an amphiphilic block copolymer and cationic surfactant. RSC Advances , 2013, 3(19): 6767–6770 doi: 10.1039/c3ra00058c
24
Niu D C, Ma Z, Li Y S, Shi J L. Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. Journal of the American Chemical Society , 2010, 132(43): 15144–15147 doi: 10.1021/ja1070653