Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2015, Vol. 9 Issue (4): 488-493   https://doi.org/10.1007/s11705-015-1503-9
  本期目录
Organogelators based on p-alkoxylbenzamide and their self-assembling properties
Yan Zhai,Wei Chai,Wenwen Cao,Zipei Sun,Yaodong Huang()
Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(982 KB)   HTML
Abstract

A series of p-alkoxylbenzamides featuring a long alkyl chain have been synthesized and are readily to form stable gels in a variety of organic solvents. Their self-assembly properties and structure-property relationship were investigated by scanning electron microscopy, X-ray diffraction, 1H nuclear magnetic resonance, and Fourier transform infrared spectroscopy. The gels formed were multi-responsive to environmental stimuli such as temperature and fluoride anion. The results show that a combination of hydrogen bonding, π-π stacking and van der Waals interaction result in the aggregation of p-alkoxylbenzamides to form three-dimension networks, depending on the length of the long alkyl chain.

Key wordsp-alkoxylbenzamide    organogelator    self-assembly    gelation
收稿日期: 2014-10-12      出版日期: 2015-11-26
Corresponding Author(s): Yaodong Huang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2015, 9(4): 488-493.
Yan Zhai,Wei Chai,Wenwen Cao,Zipei Sun,Yaodong Huang. Organogelators based on p-alkoxylbenzamide and their self-assembling properties. Front. Chem. Sci. Eng., 2015, 9(4): 488-493.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-015-1503-9
https://academic.hep.com.cn/fcse/CN/Y2015/V9/I4/488
Fig.1  
Solvent 5a 5b 5c 5d ?Solvent 5a 5b 5c 5d
Petroleum ether Ins Ins Ins Ins ?Acetone P P P 50
Diethyl ether Ins Ins Ins Ins ?Ethylacetate P P P P
Cyclohexane Ins Ins Ins Ins ?Acetonitrile P P 20 10
n-Hexane Ins Ins Ins Ins ?THF P P 60 50
Octane Ins Ins Ins Ins ?DMSO 60 100 50 25
CH2Cl2 P P 50 25 ?DMF S S 100 50
CHCl3 P P 30 30 ?CS2 P P 50 25
ClCH2CH2Cl P P 30 25 ?Pyridine S 100 100 50
CCl4 P P SP 20 ?Diethylamine 80 80 80 50
Methanol P P 40 20 ?Triethylamine 30 30 10 10
Ethanol P P 50 25 ?Diisopropylamine 50 50 50 25
Isopropyl alcohol 50 60 40 30 ?Aniline 100 100 50 50
n-Butanol 100 50 40 50 ?Benzene 60 100 25 25
n-Hexanol 100 100 50 50 ?Toluene 100 100 25 25
n-Octanol 50 50 30 30 ?Xylene 00 100 20 50
Tab.1  
Fig.2  
Fig.3  
Solvent Values of the diffraction peaks corresponding to d /nm
Small-angle region Wide-angle region
Toluene 1.406, 0.705, 0.470 0.385
Aniline 1.533, 0.765, 0.510 0.382
n-Hexanol 1.402, 0.697, 0.469 0.380
Tab.2  
Vibrations Solution /cm−1 Organogel /cm−1
ν(NH2) 3513, 3418 3387, 3167
νs(CH2) 2928 2920
νas(CH2) 2858 2854
ν(C=O) 1670 1643
δ(NH2) 1516 1574
Tab.3  
Fig.4  
Fig.5  
Fig.6  
1 Aldred  M P, Eastwood  A J, Kelly  S M, Vlachos  P, Contoret  A E A, Farrar  S R, Mansoor  B, O’Neill  M, Tsoi  W C. Light-emitting fluorene photoreactive liquid crystals for organic electroluminescence. Chemistry of Materials, 2004, 16(24): 4928–4936
2 Hafkamp  R J, Kokke  P A, Danke  I M, Guerts  H P M, Rowan  A E, Feiters  M C, Nolte  R J M. Organogel formation and molecular imprinting by functionalized gluconamides and their metal complexes. Chemical Communications, 1997, 6(6): 545–546
3 Dai  H, Chen  Q, Qin  H, Guan  Y, Shen  D, Hua  Y, Tang  Y, Xu  J. A temperature responsive copolymer hydrogel in controlled drug delivery. Macromolecules, 2006, 39(19): 6584–6589
4 Kuroiwa  K, Shibata  T, Takada  A, Nemoto  N, Kimizuka  N. Heat-set gel-like networks of lipophilic Co(II) triazole complexes in organic media and their thermochromic structural transitions. Journal of the American Chemical Society, 2004, 126(7): 2016–2021
5 Mizrahi  S, Gun  J, Kipervaser  Z G, Lev  O A. Electrophoresis in organogels. Chemical Communications, 2004, 76: 5399–5404
6 Terech  P, Weiss  R G. Low molecular mass gelators of organic liquids and the properties of their gels. Chemical Reviews, 1997, 97(8): 3133–3160
7 Van Esch  J H, Feringa  B L. New functional materials based on self-assembling organogels: from serendipity towards design. Angewandte Chemie International Edition, 2000, 39(13): 2263–2266
8 Gronwald  O, Shinkai  S. Sugar-integrated gelators of organic solvents. Chemistry (Weinheim an der Bergstrasse, Germany), 2001, 7(20): 4328–4334
9 Fages  F, Vogtle  F, Zinic  M. Systematic design of amide and urea type gelators with tilored properties. Topics in Current Chemistry, 2006, 37(33): 77–78
10 Abdallah  D J, Weiss  R G. n-Alkanes gel n-alkanes (and many other organic liquids). Langmuir, 2000, 16(2): 352–355
11 Chow  H F, Zhang  J, Lo  C M, Cheung  S Y, Wong  K W. Improving the gelation properties of 3,5-diaminobenzoate-basedorganogelators in Aromatic solvents with additional aromatic-containing Pendants. Tetrahedron, 2007, 63(2): 363–365
12 Murata  K, Aoki  M, Nishi  T, Ikeda  A, Shinkai  S. New cholesterol-based gelators with light-and metal-responsive functions. Chemical Communications, 1991, 24(24): 1715–1718
13 Naota  T, Koori  H J. Molecules that assemble by sound: an application to the instant gelation of stable organic fluids. Journal of the American Chemical Society, 2005, 127(26): 9324–9325
14 Kawano  S I, Fujita  N, Shinkai  S. A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli. Journal of the American Chemical Society, 2004, 126(28): 8592–8593
15 Wang  C, Robertson  A, Weiss  R G. “Latent” trialkylphosphine and trialkylphosphine oxide organogelators activated by Brønsted and Lewis Acids. Langmuir, 2003, 19(4): 1036–1046
16 Aggeli  A, Bell  M, Boden  N, Keen  J N, Knowles  P F, McLeish  T C B, Pitkeathly  M, Radford  S E. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature, 1997, 386(622): 259–262
17 Liu  J W, Yang  Y, Chen  C F, Ma  J T. Novel anion-tuning supramolecular  gels  with  dual-channel  response: Reversible  sol-gel transition and color changes. Langmuir, 2010, 26(11): 9040–9044
18 Luo  X Z, Liu  B, Liang  Y Q. Self-assembled organogels formed by mono-chain-alanine derivatives. Chemical Communications, 2001, 17(17): 1556–1557
19 Luo  X Z, Li  C, Liang  Y Q. Self-assembled organogels formed by monoalkyl derivatives of oxamide. Chemical Communications, 2000, 17(21): 2091–2092
20 Huang  Y D, Tu  W, Yuan  Y Q, Fan  D L. Novel organogelators based on pyrazine-2, 5-dicarboxylic acid derivatives and their mesomorphic behaviors. Tetrahedron, 2014, 70(6): 127–1282
21 Huang  Y D, Dong  X L, Zhang  L L, Chai  W, Chang  J Y. Structure-property correlation of benzoyl thiourea derivatives as organogelators. Journal of Molecular Structure, 2013, 1031: 43–48
22 Maeda  H. Anion-responsive supramolecular gels. Chemistry (Weinheim an der Bergstrasse, Germany), 2008, 14(36): 11274–11282
23 Cametti  M, Rissanen  K. Highlights on contemporary recognition and sensing of fluoride anion in solution and in the solid state. Chemical Society Reviews, 2013, 42(5): 2016–2038
24 Zhang  Y M, Lin  Q, Wei  T B, Qin  X P, Li  Y. A novel smart organogel which could allow a two channel anion response by proton controlled reversible sol-gel transition and color changes. Chemical Communications (Cambridge), 2009 (40): 6074–6076
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed