Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2016, Vol. 10 Issue (2): 213-221   https://doi.org/10.1007/s11705-015-1541-3
  本期目录
DNA alkylation promoted by an electron-rich quinone methide intermediate
Chengyun Huang1,2,Steven E. Rokita1,3,*()
1. Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
2. Sichuan Institute of Geological Engineering Investigation, Chengdu 610072, China
3. Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
 全文: PDF(861 KB)   HTML
Abstract

Biological application of conjugates derived from oligonucleotides and quinone methides have previously been limited by the slow exchange of their covalent self-adducts and subsequent alkylation of target nucleic acids. To enhance the rates of these processes, a new quinone methide precursor with an electron donating substituent has been prepared. Additionally, this substituent has been placed para to the nascent exo-methylene group of the quinone methide for maximum effect. A conjugate made from this precursor and a 5'-aminohexyloligonucleotide accelerates formation of its reversible self-adduct and alkylation of its complementary DNA as predicted from prior model studies.

Key wordsquione methide    DNA alkylation    reversible covalent reaction    bioconjugation    target-directed modification of nucleic acids
收稿日期: 2015-08-11      出版日期: 2016-05-19
Corresponding Author(s): Steven E. Rokita   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2016, 10(2): 213-221.
Chengyun Huang,Steven E. Rokita. DNA alkylation promoted by an electron-rich quinone methide intermediate. Front. Chem. Sci. Eng., 2016, 10(2): 213-221.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-015-1541-3
https://academic.hep.com.cn/fcse/CN/Y2016/V10/I2/213
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Rokita S E, ed. Quinone Methides. Hoboken: John Wiley & Sons, Inc., 2009, 1−431
2 Shabat D, Shamis M. Single-triggered AB6 self-immolative dendritic amplifiers. Chemistry (Weinheim an der Bergstrasse, Germany), 2007, 13: 4523−4528
3 Rosenau T, Kloser E, Gille L, Mazzini F, Netscher T. Vitamin E chemistry. Studies into initial oxidation intermediates of α-tocopherol: Disproving the involvement of 5a-C-centered “chromanol methide” radicals. Journal of Organic Chemistry, 2007, 72: 3268−3281
4 Colloredo-Mels S, Dorr R T, Verga D, Freccero M. Photogenerated quinone methides as useful intermediates in the synthesis of chiral BINOL ligands. Journal of Organic Chemistry, 2006, 71: 3889−3895
5 Arumugam P, Popik V V. Attach, remove, or replace: Reversible surface functionalization using thiol-quinone methide photoclick chemistry. Journal of the American Chemical Society, 2012, 134: 8408−8411
6 Hulsman N, Medema J P, Bos C, Jongejan A, Luers R, Smit M J, de Esch I J P, Richel D, Witjmans M. Chemical insights in the concept of hybrid drugs: The antitumor effect of nitric oxide-donating aspirin involves a quinone methide but not nitric oxide nor aspirin. Journal of Medicinal Chemistry, 2007, 50: 2424−2431
7 Kashfi K, Rigas B. The mechanism of action of nitric oxide-donating aspirin. Biochemical and Biophysical Research Communications, 2007, 358: 1096−1101
8 Dunlap T, Chandrasena R E P, Wang Z, Sinha V, Wang Z, Thatcher G R J. Quinone formation as a chemoprevention strategy for hybrid drugs: Balancing cytotoxity and cytoprotection. Chemical Research in Toxicology, 2007, 20: 1903−1912
9 Lewis M A, Yoerg D G, Bolton J L, Thompson J. Alkylation of 2'-deoxynucleosides and DNA by quinone methides derived from 2,6-di-tert-butyl-4-methylphenol. Chemical Research in Toxicology, 1996, 9: 1368−1374
10 Weinert E E, Frankenfield K N, Rokita S E. Time-dependent evolution of adducts formed between deoxynucleosides and a model quinone methide. Chemical Research in Toxicology, 2005, 18: 1364−1370
11 McCrane M P, Hutchinson M, Ad O, Rokita S E. Oxidative quenching of quinone methide adducts reveals transient products of reversible alkylation in duplex DNA. Chemical Research in Toxicology, 2014, 27: 1282−1293
12 Lönnberg T, Hutchinson M, Rokita S E. Selective alkylation of C-rich bulge motifs in nucleic acids by quinone methide derivatives. Chemistry, 2015, 21: 13127−13186
13 Modica E, Zanaletti R, Freccero M, Mella M. Alkylation of amino acids and glutathione in water by ortho-quinone methides. Reactivity and selectivity. Journal of Organic Chemistry, 2001, 66: 41−52
14 Zhou Q, Zuniga M A. Quinone methide formations in the Cu2+-induced oxidation of a diterpenone cataechol and concurrent damage on DNA. Chemical Research in Toxicology, 2005, 18: 382−388
15 Wang P, Liu R, Wu X, Ma H, Cao X, Zhou P, Zhang J, Weng X, Zhang X L, Zhou X, Weng L A. Potent, water-soluble and photoinducible DNA cross-linking agent. Journal of the American Chemical Society, 2003, 125: 1116−1117
16 Percivalle C, La Rosa A, Verga D, Doria F, Mella M, Palumbo M, Di Antonio M, Freccero M. Quinone methide generation via photoinduced electron transfer. Journal of Organic Chemistry, 2011, 76: 3096−3106
17 Myers J K, Widlanski T S. Mechanism-based inactivation of prostatic acid phosphatase. Science, 1993, 262: 1451−1453
18 Kwan D H, Chen H M, Ratananikom K, Hancock S M, Watanabe Y, Kongsaeree P T, Samuels A L, Withers S G. Self-immobilizing fluorogenic imaging agents of enzyme activity. Angewandte Chemie International Edition, 2011, 50: 300−303
19 Cao S, Wang Y, Peng X. ROS-inducible DNA cross-linking agent as a new anticancer prodrug building block. Chemistry, 2012, 18: 3850−3854
20 Dufrasne F, Gelbcke M, Néve J, Kiss R, Kraus J L. Quinone methides and their prodrugs: A subtle equilibrium between cancer promotion, prevention and cure. Current Medicinal Chemistry, 2011, 18: 3995−4011
21 Toteva M M, Richard J P. The generation and reactions of quinone methides. Advances in Physical Organic Chemistry, 2011, 45: 39−91
22 Cao S, Peng X. Exploiting endogenous cellular process to generate quinone methides in vivo. Current Organic Chemistry, 2014, 18: 70−85
23 Bolton J L. Quinone methide bioactivation pathway: Contribution to toxicity and/or cytoprotection. Current Organic Chemistry, 2014, 18: 61−69
24 Percivalle C, Doria F, Freccerro M. Quinone methides as DNA alkylating agents: An overview on efficient activation protocols for enhanced target selectivity. Current Organic Chemistry, 2014, 18: 19−43
25 Weinert E E, Dondi R, Colloredo-Mels S, Frankenfield K N, Mitchell C H, Freccero M, Rokita S E. Substituents on quinone methides strongly modulate formation and stability of their nucleophilic adducts. Journal of the American Chemical Society, 2006, 128: 11940−11947
26 Cao S, Christiansen R, Peng X. Substituent effects on oxidation-induced formation of quinone methides from arylboronic ester precursors. Chemistry, 2013, 19: 9050−9058
27 Veldhuyzen W F, Pande P, Rokita S E. A transient product of DNA alkylation can be stabilized by binding localization. Journal of the American Chemical Society, 2003, 125: 14005−14013
28 Kumar D, Veldhuyzen W F, Zhou Q, Rokita S E. Conjugation of a hairpin pyrrole-imidazole polyamide to a quinone methide for control of DNA cross-linking. Bioconjugate Chemistry, 2004, 15: 915−922
29 Li T, Rokita S E. Selective modification of DNA controlled by an ionic signal. Journal of the American Chemical Society, 1991, 113: 7771−7773
30 Liu Y, Rokita S E. Inducible alkylation of DNA by a quinone methide-peptide nucleic acid conjugate. Biochemistry, 2012, 51: 1020−1027
31 Zhou Q, Rokita S E. A general strategy for target-promoted alkylation in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 15452−15457
32 Wang H. Quinone methides and their biopolymer conjugates as reversible DNA alkylating agents. Current Organic Chemistry, 2014, 18: 44−60
33 Rossiter C S, Kumar D, Modica E, Rokita S E. Few constraints limit the design of quinone methide-oligonucleotide self-adducts for directing DNA alkylation. Chemical Communications, 2011, 46: 1476−1478
34 Zhou Q, Pande P, Johnson A E, Rokita S E. Sequence-specific delivery of a quinone methide intermediate to the major groove of DNA. Bioorganic & Medicinal Chemistry, 2001, 9: 2347−2354
35 Fakhari F, Rokita S E. A walk along DNA using bipedal migration of a dynamic and covalent cross-linker. Nature Communications, 2014, 5: 5591
36 Bolton J L, Sevestre H, Ibe B O, Thompson J A. Formation and reactivity of alternative quinone methides from butylated hydroxytoluene: Possible explanation for species-specific pneumotoxicity. Chemical Research in Toxicology, 1990, 3: 65−70
37 Wang H, Wahi M S, Rokita S E. Immortalizing a transient electrophile for DNA cross-linking. Angewandte Chemie International Edition, 2008, 47: 1291−1293
38 Wang H, Rokita S E. Dynamic cross-linking is retained in duplex DNA after multiple exchange of strands. Angewandte Chemie International Edition, 2010, 49: 5957−5960
39 Laganis E D, Chenard B L. Metal silanolates: Organic soluble equivalents for O−2. Tetrahedron Letters, 1984, 25: 5831−5834
40 Shirali A, Sriram M, Hall J J, Nguyen B L, Guddneppanavar R, Hadimani M B, Ackley J F, Siles R, Jelinek C J, Arthasery P, Brown R C, Murrell V L. MeModie A, Sharma S, Chaplin D J, Pinney K G. Development of synthetic methodology suitable for the radiosynthesis of combretastatin A-1 (CA1) and its corresponding prodrug CA1P. Journal of Natural Products, 2009, 72: 414−421
41 Mangas-Sánchez J, Rodriguez-Mata M, Busto E, Gotor-Fernández V, Gotor V. Chemoenzymatic synthesis of rivastigmine based on lipase-catalyzed processes. Journal of Organic Chemistry, 2009, 74: 5304−5310
42 Rokita S E. Reversible alkylation of DNA by quinone methides. Hoboken: Wiley, 2009, 297−327
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed