Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2015, Vol. 9 Issue (4): 532-540   https://doi.org/10.1007/s11705-015-1549-8
  本期目录
Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells
A. M. Bakhshayesh(),S. S. Azadfar
Department of Research and Development, SUN Nanotechnologists Company, Tehran 13488-96394, Iran
 全文: PDF(2181 KB)   HTML
Abstract

This study presents a novel nanostructural electrode made of 20-nm-diameter nanoparticles, which orderly decorated with 2-µm TiO2 particles, deposited by a new gel process. The decorated electrode (DE) is better than the non-decorated electrode (NE) in both light scattering and light harvesting, as confirmed by diffuse reflectance spectroscopy. X-ray diffraction reveals that both electrodes have a mixture of anatase and rutile phases. The dye-sensitized solar cell based on the decorated electrode shows the highest power conversion efficiency of 7.80% as a result of less recombination demonstrated by electrochemical impedance spectroscopy. From internal power conversion efficiency measurement, the external quantum efficiency of DE cell at 530 nm is 89%, which is higher than that of NE cell (77%).

Key wordsdye-sensitized solar cell    uniform particles    TiO2 gel process    light harvesting
收稿日期: 2015-08-18      出版日期: 2015-11-26
Corresponding Author(s): A. M. Bakhshayesh   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2015, 9(4): 532-540.
A. M. Bakhshayesh,S. S. Azadfar. Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells. Front. Chem. Sci. Eng., 2015, 9(4): 532-540.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-015-1549-8
https://academic.hep.com.cn/fcse/CN/Y2015/V9/I4/532
Fig.1  
Electrode Morphology Crystal structure
Non-decorated (NE) Nanoparticles Anatase+ rutile
Decorated (DE) Nanoparticles+ particles Anatase+ rutile
Tab.1  
Fig.2  
Fig.3  
Electrode Crystallite size /nm Phase composition /% Average crystallite size /nm
Anatase Rutile Anatase Rutile
NE 6.8 21.2 17.2 82.8 14.0
DE 7.1 21.7 18.5 81.5 14.4
Tab.2  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
DSC VOC /mV JSC /(mA·cm?2) FF /% PCE /% Adsorbed dye /(108·mol·cm?2) Thickness /µm
NE 732±3 13.49±0.04 62.1±0.3 6.28±0.05 9.19±0.09 14.50
DE 725±5 18.06±0.07 62.2±0.3 7.80±0.06 9.47±0.07 14.40
Dyesol 746±5 14.28±0.06 62.5±0.2 6.64±0.09 9.26±0.08 13.90
Tab.3  
Fig.8  
Fig.9  
Fig.10  
Parameter Rs/(W·cm2) Rpt/(W·cm2) Rtr/(W·cm2) Rct/(W·cm2) te/ms tt/ms L/µm De/(10?4 cm2·S?1)
NE 4.56 1.15 2.49 3.52 5.12 3.62 14.50 05.81
DE 4.49 1.24 1.28 3.16 4.10 1.66 14.40 12.49
Tab.4  
Fig.11  
Fig.12  
1 O’Regan  B, Grätzel  M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740 
https://doi.org/10.1038/353737a0
2 Mohammadi  M R, Bakhshayesh  A M, Sadri  F, Masroor  M. Improved efficiency of dye-sensitized solar cells by design of a proper double layer photoanode electrodes composed of Cr-doped TiO2 transparent and light scattering layers. Journal of Sol-Gel Science and Technology, 2013, 67(1): 77–87 
https://doi.org/10.1007/s10971-013-3052-3
3 Wang  Y Z, Chen  E L, Lai  H M, Lu  B, Hu  Z L, Qin  X M, Shi  W Z, Du  G P. Enhanced light scattering and photovoltaic performance for dye-sensitized solar cells by embedding submicron SiO2/TiO2 core/shell particles in photoanode. Ceramics International, 2013, 39(5): 5407–5413 
https://doi.org/10.1016/j.ceramint.2012.12.048
4 Xu  J L, Li  K, Shi  W Y, Peng  T Y. Rice-like brookite titania as an efficient scattering layer for nanosized anatase titania film-based dye-sensitized solar cells. Journal of Power Sources, 2014, 260: 233–242 
https://doi.org/10.1016/j.jpowsour.2014.02.092
5 Bakhshayesh  A M, Mohammadi  M R, Dadar  H, Fray  D J. Improved efficiency of dye-sensitized solar cells aided by corn-like TiO2 nanowires as the light scattering layer. Electrochimica Acta, 2013, 90: 302–308 
https://doi.org/10.1016/j.electacta.2012.12.065
6 Chen  D H, Huang  F Z, Cheng  Y B, Caruso  R A, Chen  D H, Huang  F Z, Cheng  Y B, Caruso  R A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Advanced Materials, 2009, 21(21): 2206–2210 
https://doi.org/10.1002/adma.200802603
7 Bakhshayesh  A M, Mohammadi  M R, Fray  D J. Controlling electron transport rate and recombination process of TiO2 dye-sensitized solar cells by design of double-layer films with different arrangement modes. Electrochimica Acta, 2012, 78: 384–391 
https://doi.org/doi:10.1016/j.electacta.2012.06.087
8 Bakhshayesh  A M, Mohammadi  M R. The improvement of electron transport rate of TiO2 dye-sensitized solar cells using mixed nanostructures with different phase compositions. Ceramics International, 2013, 39(7): 7343–7353 
https://doi.org/doi:10.1016/j.ceramint.2013.02.073
9 Deepak  T D, Anjusree  G S, Thomas  S, Arun  T A, Nair  S V, Sreekumaran Nair  A. A review on materials for light scattering in dye-sensitized solar cells. RSC Advances, 2014, 4(34): 17615–17638 
https://doi.org/10.1039/c4ra01308e
10 Usami  A. Theoretical study of application of multiple scattering of light to a dye sensitized nanocrystalline photoelectrichemical cell. Chemical Physics Letters, 1997, 277(1-3): 105–108 
https://doi.org/10.1016/S0009-2614(97)00878-6
11 Wang  Z S, Kawauchi  H, Kashima  T, Arakawa  H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 2004, 248(13-14): 1381–1389 
https://doi.org/10.1016/j.ccr.2004.03.006
12 Ferber  J, Luther  J. Computer simulations of light scattering and absorption in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 1998, 54(1-4): 265–275 
https://doi.org/10.1016/S0927-0248(98)00078-6
13 Kang  S H, Kim  J Y, Kim  H S, Koh  H D, Lee  J S, Sung  Y E. Influence of light scattering particles in the TiO2 photoelectrode for solid-state dye-sensitized solar cell. Journal of Photochemistry and Photobiology A Chemistry, 2008, 200(2-3): 294–300 
https://doi.org/10.1016/j.jphotochem.2008.08.010
14 Liang  J, Zhang  G, Xia  H, Sun  W. Room-temperature fabrication of dual-functional hierarchical TiO2 spheres for dye-sensitized solar cells. RSC Advances, 2014, 4(25): 12649–12652 
https://doi.org/10.1039/c3ra47606e
15 Zhang  Q, Chou  T P, Russo  B, Jenekhe  S A, Cao  G. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angewandte Chemie International Edition, 2008, 47(13): 2402–2406 
https://doi.org/10.1002/anie.200704919
16 Bakhshayesh  A M, Mohammadi  M R. Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications. Electrochimica Acta, 2013, 89: 90–97 
https://doi.org/10.1016/j.electacta.2012.11.060
17 Ito  S, Liska  P, Pechy  P, Bach  U, Nazeeruddin  M K, Kay  A, Zekeeruddin  S M, Grätzel  M. Control of dark current in photoelectrochemical (TiO2/I‒−I3‒) and dye-sensitized solar cells. Chemical Communications, 2005, 34(34): 4351–4353 
https://doi.org/10.1039/b505718c
18 Jeong  N C, Farha  O K, Hupp  J T. A convenient Route to high area, nanoparticulate TiO2 photoelectrodes suitable for high-efficiency energy conversion in dye-sensitized solar cells. Langmuir, 2011, 27(5): 1996–1999 
https://doi.org/10.1021/la104297s
19 Spurr  R A, Myers  H. Quantitative analysis of anatase-rutile mixtures with anX-ray diffractometer. Analytical Chemistry, 1957, 29(5): 760–762 
https://doi.org/10.1021/ac60125a006
20 Cullity  B D, Stock  S R. Elements of X-ray diffraction. Lawrence: Prentice Hall, 2001, 96 102<?Pub Caret?>
21 Yang  L, Lin  Y, Jia  J, Xiao  X, Li  X, Zhou  X. Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO2 spheres. Journal of Power Sources, 2008, 182(1): 370–376 
https://doi.org/10.1016/j.jpowsour.2008.03.013
22 Feigenbrugel  C, Loew  S L, Calvé  P, Mirabel  J. Near-UV molar absorptivities ofacetone, alachlor, metolachlor, diazinon and dichlorvos in aqueous solution. Journal of Photochemistry and Photobiology A Chemistry, 2005, 174(1): 76–81 
https://doi.org/10.1016/j.jphotochem.2005.03.014
23 Longo  C, Freitas  J, De Paoli  M A. Performance and stability of TiO2 dye solar cells assembled with flexible electrodes and a polymer electrolyte. Journal of Photochemistry and Photobiology A Chemistry, 2003, 159(1): 33–39 
https://doi.org/10.1016/S1010-6030(03)00106-0
24 Lin  Y P, Lin  S Y, Lee  Y C, Chen  Y W. High surface area electrospun prickle-like hierarchical anatase TiO2 nanofibers for dye-sensitized solar cell photoanodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(34): 9875–9884 
https://doi.org/10.1039/c3ta10925a
25 Schlichthorl  G, Huang  S Y, Sprague  J, Frank  A J. Band-edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy. Journal of Physical Chemistry B, 1997, 101(41): 8141–8155 
https://doi.org/10.1021/jp9714126
26 Zhang  L W, Fu  H B, Zhu  Y F. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Advanced Functional Materials, 2008, 18(15): 2180–2189 
https://doi.org/10.1002/adfm.200701478
27 Martinson  A A B F, Goes  M S, Fabregat-Santiago  F, Bisquert  J, Pellin  M J, Hupp  J T. Electron transport in dye-sensitized solar cells based on ZnO nanotubes: Evidence for highly efficient charge collection and exceptionally rapid dynamics. Journal of Physical Chemistry A, 2009, 113(16): 4015–4021 
https://doi.org/10.1021/jp810406q
28 Fabregat-Santiago  F, Bisquert  J, Palomares  E, Otero  L, Kuang  D, Zakeeruddin  S M, Gratzel  M. Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. Journal of Physical Chemistry C, 2007, 111(17): 6550–6560 
https://doi.org/10.1021/jp066178a
29 Tsai  C H, Chang  C W, Tsai  Y T, Lu  C Y, Chen  M C, Huang  T W, Wu  C C. Novel three-layer TiO2 nanoparticle stacking architecture for efficient dye-sensitized solar cells. Organic Electronics, 2013, 14(11): 2866–2874 
https://doi.org/10.1016/j.orgel.2013.08.014
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed