This study presents a novel nanostructural electrode made of 20-nm-diameter nanoparticles, which orderly decorated with 2-µm TiO2 particles, deposited by a new gel process. The decorated electrode (DE) is better than the non-decorated electrode (NE) in both light scattering and light harvesting, as confirmed by diffuse reflectance spectroscopy. X-ray diffraction reveals that both electrodes have a mixture of anatase and rutile phases. The dye-sensitized solar cell based on the decorated electrode shows the highest power conversion efficiency of 7.80% as a result of less recombination demonstrated by electrochemical impedance spectroscopy. From internal power conversion efficiency measurement, the external quantum efficiency of DE cell at 530 nm is 89%, which is higher than that of NE cell (77%).
. [J]. Frontiers of Chemical Science and Engineering, 2015, 9(4): 532-540.
A. M. Bakhshayesh,S. S. Azadfar. Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells. Front. Chem. Sci. Eng., 2015, 9(4): 532-540.
O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740
https://doi.org/10.1038/353737a0
2
Mohammadi M R, Bakhshayesh A M, Sadri F, Masroor M. Improved efficiency of dye-sensitized solar cells by design of a proper double layer photoanode electrodes composed of Cr-doped TiO2 transparent and light scattering layers. Journal of Sol-Gel Science and Technology, 2013, 67(1): 77–87
https://doi.org/10.1007/s10971-013-3052-3
3
Wang Y Z, Chen E L, Lai H M, Lu B, Hu Z L, Qin X M, Shi W Z, Du G P. Enhanced light scattering and photovoltaic performance for dye-sensitized solar cells by embedding submicron SiO2/TiO2 core/shell particles in photoanode. Ceramics International, 2013, 39(5): 5407–5413
https://doi.org/10.1016/j.ceramint.2012.12.048
4
Xu J L, Li K, Shi W Y, Peng T Y. Rice-like brookite titania as an efficient scattering layer for nanosized anatase titania film-based dye-sensitized solar cells. Journal of Power Sources, 2014, 260: 233–242
https://doi.org/10.1016/j.jpowsour.2014.02.092
5
Bakhshayesh A M, Mohammadi M R, Dadar H, Fray D J. Improved efficiency of dye-sensitized solar cells aided by corn-like TiO2 nanowires as the light scattering layer. Electrochimica Acta, 2013, 90: 302–308
https://doi.org/10.1016/j.electacta.2012.12.065
6
Chen D H, Huang F Z, Cheng Y B, Caruso R A, Chen D H, Huang F Z, Cheng Y B, Caruso R A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Advanced Materials, 2009, 21(21): 2206–2210
https://doi.org/10.1002/adma.200802603
7
Bakhshayesh A M, Mohammadi M R, Fray D J. Controlling electron transport rate and recombination process of TiO2 dye-sensitized solar cells by design of double-layer films with different arrangement modes. Electrochimica Acta, 2012, 78: 384–391
https://doi.org/doi:10.1016/j.electacta.2012.06.087
8
Bakhshayesh A M, Mohammadi M R. The improvement of electron transport rate of TiO2 dye-sensitized solar cells using mixed nanostructures with different phase compositions. Ceramics International, 2013, 39(7): 7343–7353
https://doi.org/doi:10.1016/j.ceramint.2013.02.073
9
Deepak T D, Anjusree G S, Thomas S, Arun T A, Nair S V, Sreekumaran Nair A. A review on materials for light scattering in dye-sensitized solar cells. RSC Advances, 2014, 4(34): 17615–17638
https://doi.org/10.1039/c4ra01308e
10
Usami A. Theoretical study of application of multiple scattering of light to a dye sensitized nanocrystalline photoelectrichemical cell. Chemical Physics Letters, 1997, 277(1-3): 105–108
https://doi.org/10.1016/S0009-2614(97)00878-6
11
Wang Z S, Kawauchi H, Kashima T, Arakawa H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 2004, 248(13-14): 1381–1389
https://doi.org/10.1016/j.ccr.2004.03.006
12
Ferber J, Luther J. Computer simulations of light scattering and absorption in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 1998, 54(1-4): 265–275
https://doi.org/10.1016/S0927-0248(98)00078-6
13
Kang S H, Kim J Y, Kim H S, Koh H D, Lee J S, Sung Y E. Influence of light scattering particles in the TiO2 photoelectrode for solid-state dye-sensitized solar cell. Journal of Photochemistry and Photobiology A Chemistry, 2008, 200(2-3): 294–300
https://doi.org/10.1016/j.jphotochem.2008.08.010
14
Liang J, Zhang G, Xia H, Sun W. Room-temperature fabrication of dual-functional hierarchical TiO2 spheres for dye-sensitized solar cells. RSC Advances, 2014, 4(25): 12649–12652
https://doi.org/10.1039/c3ra47606e
15
Zhang Q, Chou T P, Russo B, Jenekhe S A, Cao G. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angewandte Chemie International Edition, 2008, 47(13): 2402–2406
https://doi.org/10.1002/anie.200704919
16
Bakhshayesh A M, Mohammadi M R. Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications. Electrochimica Acta, 2013, 89: 90–97
https://doi.org/10.1016/j.electacta.2012.11.060
17
Ito S, Liska P, Pechy P, Bach U, Nazeeruddin M K, Kay A, Zekeeruddin S M, Grätzel M. Control of dark current in photoelectrochemical (TiO2/I‒−I3‒) and dye-sensitized solar cells. Chemical Communications, 2005, 34(34): 4351–4353
https://doi.org/10.1039/b505718c
18
Jeong N C, Farha O K, Hupp J T. A convenient Route to high area, nanoparticulate TiO2 photoelectrodes suitable for high-efficiency energy conversion in dye-sensitized solar cells. Langmuir, 2011, 27(5): 1996–1999
https://doi.org/10.1021/la104297s
19
Spurr R A, Myers H. Quantitative analysis of anatase-rutile mixtures with anX-ray diffractometer. Analytical Chemistry, 1957, 29(5): 760–762
https://doi.org/10.1021/ac60125a006
20
Cullity B D, Stock S R. Elements of X-ray diffraction. Lawrence: Prentice Hall, 2001, 96 102<?Pub Caret?>
21
Yang L, Lin Y, Jia J, Xiao X, Li X, Zhou X. Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO2 spheres. Journal of Power Sources, 2008, 182(1): 370–376
https://doi.org/10.1016/j.jpowsour.2008.03.013
22
Feigenbrugel C, Loew S L, Calvé P, Mirabel J. Near-UV molar absorptivities ofacetone, alachlor, metolachlor, diazinon and dichlorvos in aqueous solution. Journal of Photochemistry and Photobiology A Chemistry, 2005, 174(1): 76–81
https://doi.org/10.1016/j.jphotochem.2005.03.014
23
Longo C, Freitas J, De Paoli M A. Performance and stability of TiO2 dye solar cells assembled with flexible electrodes and a polymer electrolyte. Journal of Photochemistry and Photobiology A Chemistry, 2003, 159(1): 33–39
https://doi.org/10.1016/S1010-6030(03)00106-0
24
Lin Y P, Lin S Y, Lee Y C, Chen Y W. High surface area electrospun prickle-like hierarchical anatase TiO2 nanofibers for dye-sensitized solar cell photoanodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(34): 9875–9884
https://doi.org/10.1039/c3ta10925a
25
Schlichthorl G, Huang S Y, Sprague J, Frank A J. Band-edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy. Journal of Physical Chemistry B, 1997, 101(41): 8141–8155
https://doi.org/10.1021/jp9714126
26
Zhang L W, Fu H B, Zhu Y F. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Advanced Functional Materials, 2008, 18(15): 2180–2189
https://doi.org/10.1002/adfm.200701478
27
Martinson A A B F, Goes M S, Fabregat-Santiago F, Bisquert J, Pellin M J, Hupp J T. Electron transport in dye-sensitized solar cells based on ZnO nanotubes: Evidence for highly efficient charge collection and exceptionally rapid dynamics. Journal of Physical Chemistry A, 2009, 113(16): 4015–4021
https://doi.org/10.1021/jp810406q
28
Fabregat-Santiago F, Bisquert J, Palomares E, Otero L, Kuang D, Zakeeruddin S M, Gratzel M. Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. Journal of Physical Chemistry C, 2007, 111(17): 6550–6560
https://doi.org/10.1021/jp066178a
29
Tsai C H, Chang C W, Tsai Y T, Lu C Y, Chen M C, Huang T W, Wu C C. Novel three-layer TiO2 nanoparticle stacking architecture for efficient dye-sensitized solar cells. Organic Electronics, 2013, 14(11): 2866–2874
https://doi.org/10.1016/j.orgel.2013.08.014