1. Department of Chemistry, University of Tennessee, Knoxville, TN 37916, USA 2. Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Heterogeneous catalysis with core-shell structures has been a large area of focus for many years. This paper reviews the most recent work and research in core-shell catalysts utilizing noble metals, specifically gold, as the core within a metal oxide shell. The advantage of the core-shell structure lies in its capacity to retain catalytic activity under thermal and mechanical stress, which is a pivotal consideration when synthesizing any catalyst. This framework is particularly useful for gold nanoparticles in protecting them from sintering so that they retain their size, structure, and most importantly their catalytic efficiency. The different methods of synthesizing such a structure have been compiled into three categories: seed-mediated growth, post selective oxidation treatment, and one-pot chemical synthesis. The selective oxidation of carbon monoxide and reduction of nitrogen containing compounds, such as nitrophenol and nitrostyrene, have been studied over the past few years to evaluate the functionality and stability of the core-shell catalysts. Different factors that could influence the catalyst’s performance are the size, structure, choice of metal oxide shell and noble metal core and thereby the interfacial synergy and lattice mismatch between the core and shell. In addition, the morphology of the shell also plays a critical role, including its porosity, density, and thickness. This review covers the synthesis and characterization of gold-metal oxide core-shell structures, as well as how they are utilized as catalysts for carbon monoxide (CO) oxidation and selective reduction of nitrogen-containing compounds.
收稿日期: 2015-09-25
出版日期: 2016-02-29
Corresponding Author(s):
Huiyuan Zhu,Sheng Dai
引用本文:
. [J]. Frontiers of Chemical Science and Engineering, 2016, 10(1): 39-56.
Michelle Lukosi,Huiyuan Zhu,Sheng Dai. Recent advances in gold-metal oxide core-shell nanoparticles: Synthesis, characterization, and their application for heterogeneous catalysis. Front. Chem. Sci. Eng., 2016, 10(1): 39-56.
Kummer J. Use of noble metals in automobile exhaust catalysts. Journal of Physical Chemistry, 1986, 90(20): 4747–4752
https://doi.org/10.1021/j100411a008
Jacobsen C J, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117
https://doi.org/10.1021/ja000744c
7
Corma A, Diaz-Cabanas M J, Martínez-Triguero J, Rey F, Rius J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 2002, 418(6897): 514–517
https://doi.org/10.1038/nature00924
An T, Yang H, Song W, Li G, Luo H, Cooper W J. Mechanistic considerations for the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using TiO2 heterogeneous catalysis. Journal of Physical Chemistry A, 2010, 114(7): 2569–2575
https://doi.org/10.1021/jp911349y
10
Janardhanan V M, Deutschmann O. CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes. Journal of Power Sources, 2006, 162(2): 1192–1202
https://doi.org/10.1016/j.jpowsour.2006.08.017
11
Park S, Gorte R J, Vohs J M. Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell. Applied Catalysis A, General, 2000, 200(1): 55–61
https://doi.org/10.1016/S0926-860X(00)00650-5
12
Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. Journal of Physical Chemistry B, 2003, 107(26): 6292–6299
https://doi.org/10.1021/jp022505c
13
Bond G C. The effect of the metal to non-metal transition on the activity of gold catalysts. Faraday Discussions, 2011, 152: 277–291
https://doi.org/10.1039/c1fd00010a
14
Haruta M. When gold is not noble: Catalysis by nanoparticles. Chemical Record (New York, N.Y.), 2003, 3(2): 75–87
https://doi.org/10.1002/tcr.10053
Zhang Q, Lee I, Joo J B, Zaera F, Yin Y. Core-shell nanostructured catalysts. Accounts of Chemical Research, 2012, 46(8): 1816–1824
https://doi.org/10.1021/ar300230s
Tripathy S K, Mishra A, Jha S K, Wahab R, Al-Khedhairy A A. Synthesis of thermally stable monodispersed Au@ SnO2 core-shell structure nanoparticles by a sonochemical technique for detection and degradation of acetaldehyde. Analytical Methods, 2013, 5(6): 1456–1462
https://doi.org/10.1039/c3ay26549h
20
Chen Y, Zhu B, Yao M, Wang S, Zhang S. The preparation and characterization of Au@TiO2 nanoparticles and their catalytic activity for CO oxidation. Catalysis Communications, 2010, 11(12): 1003–1007
https://doi.org/10.1016/j.catcom.2010.03.018
21
Wu X F, Chen Y F, Yoon J M, Yu Y T. Fabrication and properties of flower-shaped Pt@TiO2 core-shell nanoparticles. Materials Letters, 2010, 64(20): 2208–2210
https://doi.org/10.1016/j.matlet.2010.07.027
Haruta M. Chance and necessity: My encounter with gold catalysts. Angewandte Chemie International Edition, 2014, 53(1): 52–56
https://doi.org/10.1002/anie.201305987
24
Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281(5383): 1647–1650
https://doi.org/10.1126/science.281.5383.1647
25
Haruta M, Kobayashi T, Sano H, Yamada N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chemistry Letters, 1987, 16(2): 405–408
26
Haruta M, Yamada N, Kobayashi T, Iijima S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis, 1989, 115(2): 301–309
https://doi.org/10.1016/0021-9517(89)90034-1
27
Zhang J, Tang Y, Lee K, Ouyang M. Tailoring light-matter-spin interactions in colloidal hetero-nanostructures. Nature, 2010, 466(7302): 91–95
https://doi.org/10.1038/nature09150
28
Baker G A. Nanoparticles: From theory to application. Journal of the American Chemical Society, 2004, 126(47): 15632–15633
29
Natelson D. Nanostructures and Nanotechnology. Cambridge: Cambridge University Press, 2015
30
Aguirre M E, Rodríguez H B, San Román E, Feldhoff A, Grela M A. Ag@ZnO core-shell nanoparticles formed by the timely reduction of Ag+ ions and zinc acetate hydrolysis in N,N-dimethylformamide: Mechanism of growth and photocatalytic properties. Journal of Physical Chemistry C, 2011, 115(50): 24967–24974
https://doi.org/10.1021/jp209117s
31
Arroyo-Ramírez L, Chen C, Cargnello M, Murray C B, Fornasiero P, Gorte R J. Supported platinum-zinc oxide core-shell nanoparticle catalysts for methanol steam reforming. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(45): 19509–19514
https://doi.org/10.1039/C4TA04790G
32
Zhang N, Liu S, Fu X, Xu Y J. Synthesis of M@TiO2 (M= Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity. Journal of Physical Chemistry C, 2011, 115(18): 9136–9145
https://doi.org/10.1021/jp2009989
33
An K, Zhang Q, Alayoglu S, Musselwhite N, Shin J Y, Somorjai G A. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: Role of oxide-metal interface and thermal stability. Nano Letters, 2014, 14(8): 4907–4912
https://doi.org/10.1021/nl502434m
34
Liu S, Xie M, Li Y, Guo X, Ji W, Ding W, Au C. Novel sea urchin-like hollow core-shell SnO2 superstructures: Facile synthesis and excellent ethanol sensing performance. Sensors and Actuators. B, Chemical, 2010, 151(1): 229–235
https://doi.org/10.1016/j.snb.2010.09.015
35
Phadungdhitidhada S, Thanasanvorakun S, Mangkorntong P, Choopun S, Mangkorntong N, Wongratanaphisan D. SnO2 nanowires mixed nanodendrites for high ethanol sensor response. Current Applied Physics, 2011, 11(6): 1368–1373
https://doi.org/10.1016/j.cap.2011.04.007
36
McAleer J F, Moseley P T, Norris J O, Williams D E. Tin dioxide gas sensors. Part 1. Aspects of the surface chemistry revealed by electrical conductance variations. Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 1987, 83(4): 1323–1346
37
Yu K, Wu Z, Zhao Q, Li B, Xie Y. High-temperature-stable Au@SnO2 core/shell supported catalyst for CO oxidation. Journal of Physical Chemistry C, 2008, 112(7): 2244–2247
https://doi.org/10.1021/jp711880e
38
Galeano C, Güttel R, Paul M, Arnal P, Lu A H, Schüth F. Yolk-shell gold nanoparticles as model materials for support—effect studies in heterogeneous catalysis: Au,@C and Au,@ZrO2 for CO oxidation as an example. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(30): 8434–8439
https://doi.org/10.1002/chem.201100318
39
Bakhmutsky K, Wieder N L, Cargnello M, Galloway B, Fornasiero P, Gorte R J. A Versatile route to core-shell catalysts: Synthesis of dispersible M@ Oxide (M= Pd, Pt; Oxide= TiO2, ZrO2) nanostructures by self–assembly. ChemSusChem, 2012, 5(1): 140–148
https://doi.org/10.1002/cssc.201100491
40
Manicone P F, Iommetti P R, Raffaelli L. An overview of zirconia ceramics: Basic properties and clinical applications. Journal of Dentistry, 2007, 35(11): 819–826
https://doi.org/10.1016/j.jdent.2007.07.008
41
Wei Y, Zhao Z, Yu X, Jin B, Liu J, Xu C, Duan A, Jiang G, Ma S. One-pot synthesis of core-shell Au@ CeO2-d nanoparticles supported on three-dimensionally ordered macroporous ZrO2 with enhanced catalytic activity and stability for soot combustion. Catalysis Science & Technology, 2013, 3(11): 2958–2970
https://doi.org/10.1039/c3cy00248a
42
Kong L, Chen W, Ma D, Yang Y, Liu S, Huang S. Size control of Au@Cu2O octahedra for excellent photocatalytic performance. Journal of Materials Chemistry, 2012, 22(2): 719–724
https://doi.org/10.1039/C1JM13672K
43
Lin F H, Doong R. Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. Journal of Physical Chemistry C, 2011, 115(14): 6591–6598
https://doi.org/10.1021/jp110956k
44
Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao Y P, Wang M, Li L, Rallo R, Damoiseaux R, Telesca D, Mädler L, Cohen Y, Zink J I, Nel A E. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano, 2012, 6(5): 4349–4368
https://doi.org/10.1021/nn3010087
45
Zhu H, Sigdel A, Zhang S, Su D, Xi Z, Li Q, Sun S. Core/shell Au/MnO nanoparticles prepared through controlled oxidation of AuMn as an electrocatalyst for sensitive H2O2 detection. Angewandte Chemie, 2014, 126(46): 12716–12720
https://doi.org/10.1002/ange.201406281
46
Zhang T, Zhao H, He S, Liu K, Liu H, Yin Y, Gao C. Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis. ACS Nano, 2014, 8(7): 7297–7304
https://doi.org/10.1021/nn502349k
47
Rubinstein M, Kodama R, Makhlouf S A. Electron spin resonance study of NiO antiferromagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2001, 234(2): 289–293
https://doi.org/10.1016/S0304-8853(01)00313-4
Wang Z, Bi H, Wang P, Wang M, Liu Z, Liu X. Magnetic and microwave absorption properties of self-assemblies composed of core-shell cobalt-cobalt oxide nanocrystals. Physical Chemistry Chemical Physics, 2015, 17(5): 3796–3801
https://doi.org/10.1039/C4CP04985C
50
Zhang J, Tang Y, Lee K, Ouyang M. Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science, 2010, 327(5973): 1634–1638
https://doi.org/10.1126/science.1184769
51
Sun H, He J, Wang J, Zhang S Y, Liu C, Sritharan T, Mhaisalkar S, Han M Y, Wang D, Chen H. Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation. Journal of the American Chemical Society, 2013, 135(24): 9099–9110
https://doi.org/10.1021/ja4035335
52
Zheleva T, Jagannadham K, Narayan J. Epitaxial growth in large-lattice-mismatch systems. Journal of Applied Physics, 1994, 75(2): 860–871
https://doi.org/10.1063/1.356440
53
Chen Y, Washburn J. Structural transition in large-lattice-mismatch heteroepitaxy. Physical Review Letters, 1996, 77(19): 4046–4049
https://doi.org/10.1103/PhysRevLett.77.4046
54
Kukta R, Freund L. Minimum energy configuration of epitaxial material clusters on a lattice-mismatched substrate. Journal of the Mechanics and Physics of Solids, 1997, 45(11): 1835–1860
https://doi.org/10.1016/S0022-5096(97)00031-8
55
Qi J, Chen J, Li G, Li S, Gao Y, Tang Z. Facile synthesis of core-shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation. Energy & Environmental Science, 2012, 5(10): 8937–8941
https://doi.org/10.1039/c2ee22600f
56
Liu D Y, Ding S Y, Lin H X, Liu B J, Ye Z Z, Fan F R, Ren B, Tian Z Q. Distinctive enhanced and tunable plasmon resonant absorption from controllable Au@Cu2O nanoparticles: Experimental and theoretical modeling. Journal of Physical Chemistry C, 2012, 116(7): 4477–4483
https://doi.org/10.1021/jp211565c
57
Meir N, Jen-La P I, Flomin K, Chockler E, Moshofsky B, Diab M, Volokh M, Mokari T. Studying the chemical, optical and catalytic properties of noble metal (Pt, Pd, Ag, Au)-Cu2O core-shell nanostructures grown via a general approach. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(5): 1763–1769
https://doi.org/10.1039/C2TA00721E
58
Wang W C, Lyu L M, Huang M H. Investigation of the effects of polyhedral gold nanocrystal morphology and facets on the formation of Au-Cu2O core-shell heterostructures. Chemistry of Materials, 2011, 23(10): 2677–2684
https://doi.org/10.1021/cm200708q
59
Zhang L, Blom D A, Wang H. Au-Cu2O core-shell nanoparticles: A hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chemistry of Materials, 2011, 23(20): 4587–4598
https://doi.org/10.1021/cm202078t
60
Yin H, Ma Z, Chi M, Dai S. Heterostructured catalysts prepared by dispersing Au@Fe2O3 core-shell structures on supports and their performance in CO oxidation. Catalysis Today, 2011, 160(1): 87–95
https://doi.org/10.1016/j.cattod.2010.05.013
61
Zhuang Z, Sheng W, Yan Y. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Advanced Materials, 2014, 26(23): 3950–3955
https://doi.org/10.1002/adma.201400336
62
Lin M, Wang Y, Sun X, Wang W, Chen L. “Elastic” property of mesoporous silica shell: For dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. ACS Applied Materials & Interfaces, 2015, 7(14): 7516–7525
https://doi.org/10.1021/acsami.5b01077
63
Chung F C, Wu R J, Cheng F C. Fabrication of a Au@SnO2 core-shell structure for gaseous formaldehyde sensing at room temperature. Sensors and Actuators. B, Chemical, 2014, 190: 1–7
https://doi.org/10.1016/j.snb.2013.08.037
64
Wu R J, Lin D J, Yu M R, Chen M H, Lai H F. Ag@SnO2 core-shell material for use in fast-response ethanol sensor at room operating temperature. Sensors and Actuators. B, Chemical, 2013, 178: 185–191
https://doi.org/10.1016/j.snb.2012.12.052
65
Goebl J, Joo J B, Dahl M, Yin Y. Synthesis of tailored Au@TiO2 core-shell nanoparticles for photocatalytic reforming of ethanol. Catalysis Today, 2014, 225: 90–95
https://doi.org/10.1016/j.cattod.2013.09.011
66
Fang C, Jia H, Chang S, Ruan Q, Wang P, Chen T, Wang J. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energy & Environmental Science, 2014, 7(10): 3431–3438
https://doi.org/10.1039/C4EE01787K
Ge J, Zhang Q, Zhang T, Yin Y. Core-satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability. Angewandte Chemie, 2008, 120(46): 9056–9060
https://doi.org/10.1002/ange.200803968
69
Poovarodom S, Bass J D, Hwang S J, Katz A. Investigation of the core-shell interface in gold@silica nanoparticles: A silica imprinting approach. Langmuir, 2005, 21(26): 12348–12356
https://doi.org/10.1021/la052006d
70
Liz-Marzán L M, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shell particles. Langmuir, 1996, 12(18): 4329–4335
https://doi.org/10.1021/la9601871
71
Zhang J, Li L, Huang X, Li G. Fabrication of Ag-CeO2 core-shell nanospheres with enhanced catalytic performance due to strengthening of the interfacial interactions. Journal of Materials Chemistry, 2012, 22(21): 10480–10487
https://doi.org/10.1039/c2jm16701h
72
Zhang N, Xu Y J. Aggregation-and leaching-resistant, reusable, and multifunctional Pd@CeO2 as a robust nanocatalyst achieved by a hollow core-shell strategy. Chemistry of Materials, 2013, 25(9): 1979–1988
https://doi.org/10.1021/cm400750c
73
Tsuji M, Matsuo R, Jiang P, Miyamae N, Ueyama D, Nishio M, Hikino S, Kumagae H, Kamarudin K S N, Tang X L. Shape-dependent evolution of Au@Ag core-shell nanocrystals by PVP-assisted N,N-dimethylformamide reduction. Crystal Growth & Design, 2008, 8(7): 2528–2536
https://doi.org/10.1021/cg800162t
74
Arnal P M, Comotti M, Schüth F. High temperature stable catalysts by hollow sphere encapsulation. Angewandte Chemie, 2006, 118(48): 8404–8407
https://doi.org/10.1002/ange.200603507
75
Qu Y, Liu F, Wei Y, Gu C, Zhang L, Liu Y. Forming ceria shell on Au-core by LSPR photothermal induced interface reaction. Applied Surface Science, 2015, 343: 207–211
https://doi.org/10.1016/j.apsusc.2015.03.114
76
Li B, Gu T, Ming T, Wang J, Wang P, Wang J, Yu J C. (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano, 2014, 8(8): 8152–8162
https://doi.org/10.1021/nn502303h
77
Zhu Z, Chang J L, Wu R J. Fast ozone detection by using a core-shell Au@TiO2 sensor at room temperature. Sensors and Actuators. B, Chemical, 2015, 214: 56–62
https://doi.org/10.1016/j.snb.2015.03.017
78
Mitsudome T, Yamamoto M, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K. One-step synthesis of core-gold/shell-ceria nano-material and its catalysis for highly selective semihydrogenation of alkynes. Journal of the American Chemical Society, 2015, 137(42): 13452–13455
https://doi.org/10.1021/jacs.5b07521
79
Han L, Zhu C, Hu P, Dong S. One-pot synthesis of a Au@TiO2 core-shell nanocomposite and its catalytic property. RSC Advances, 2013, 3(31): 12568–12570
https://doi.org/10.1039/c3ra42431f
80
Han L, Wei H, Tu B, Zhao D. A facile one-pot synthesis of uniform core-shell silver nanoparticle@ mesoporous silica nanospheres. Chemical Communications, 2011, 47(30): 8536–8538
https://doi.org/10.1039/c1cc12718g
81
Jiang W, Zhou Y, Zhang Y, Xuan S, Gong X. Superparamagnetic Ag@Fe3O4 core-shell nanospheres: Fabrication, characterization and application as reusable nanocatalysts. Dalton Transactions (Cambridge, England), 2012, 41(15): 4594–4601
https://doi.org/10.1039/c2dt12307j
82
Chen L, Chang B K, Lu Y, Yang W, Tatarchuk B J. Selective catalytic oxidation of CO for fuel cell application. Fuel Chemistry Division Preprints, 2002, 47(2): 609–610
Kandoi S, Gokhale A, Grabow L, Dumesic J, Mavrikakis M. Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catalysis Letters, 2004, 93(1-2): 93–100
https://doi.org/10.1023/B:CATL.0000016955.66476.44
85
Güttel R, Paul M, Galeano C, Schüth F. Au @ZrO2 yolk-shell catalysts for CO oxidation: Study of particle size effect by ex-post size control of Au cores. Journal of Catalysis, 2012, 289: 100–104
https://doi.org/10.1016/j.jcat.2012.01.021
86
Bauer J C, Toops T J, Oyola Y, Parks J E, II, Dai S, Overbury S H. Catalytic activity and thermal stability of Au-CuO/SiO2 catalysts for the low temperature oxidation of CO in the presence of propylene and NO. Catalysis Today, 2014, 231: 15–21
https://doi.org/10.1016/j.cattod.2014.01.040
87
Pachfule P, Kandambeth S, Díaz D D, Banerjee R. Highly stable covalent organic framework—Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chemical Communications, 2014, 50(24): 3169–3172
https://doi.org/10.1039/c3cc49176e
88
Du Y, Chen H, Chen R, Xu N. Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts. Applied Catalysis A, General, 2004, 277(1): 259–264
https://doi.org/10.1016/j.apcata.2004.09.018
89
Woo H, Park K H. Hybrid Au nanoparticles on Fe3O4@ polymer as efficient catalyst for reduction of 4-nitrophenol. Catalysis Communications, 2014, 46: 133–137
https://doi.org/10.1016/j.catcom.2013.12.007
90
Kang H, Kim M, Park K H. Effective immobilization of gold nanoparticles on core-shell thiol-functionalized GO coated TiO2 and their catalytic application in the reduction of 4-nitrophenol. Applied Catalysis A, General, 2015, 502: 239–245
https://doi.org/10.1016/j.apcata.2015.05.032
91
Robinson I, Tung L D, Maenosono S, Wälti C, Thanh N T. Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale, 2010, 2(12): 2624–2630
https://doi.org/10.1039/c0nr00621a
92
Chang Y C, Chen D H. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. Journal of Hazardous Materials, 2009, 165(1): 664–669
https://doi.org/10.1016/j.jhazmat.2008.10.034
93
Gupta V K, Atar N, Yola M L, Üstündağ Z, Uzun L. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Research, 2014, 48: 210–217
https://doi.org/10.1016/j.watres.2013.09.027
94
Fan C M, Zhang L F, Wang S S, Wang D H, Lu L Q, Xu A W. Novel CeO2 yolk-shell structures loaded with tiny Au nanoparticles for superior catalytic reduction of p-nitrophenol. Nanoscale, 2012, 4(21): 6835–6840
https://doi.org/10.1039/c2nr31713c
95
Evangelista V, Acosta B, Miridonov S, Smolentseva E, Fuentes S, Simakov A. Highly active Au-CeO2@ZrO2 yolk-shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol. Applied Catalysis B: Environmental, 2015, 166: 518–528
https://doi.org/10.1016/j.apcatb.2014.12.006
96
He B, Zhao Q, Zeng Z, Wang X, Han S. Effect of hydrothermal reaction time and calcination temperature on properties of Au@CeO2 core-shell catalyst for CO oxidation at low temperature. Journal of Materials Science, 2015, 50(19): 6339–6348
https://doi.org/10.1007/s10853-015-9181-z
97
Ke F, Zhu J, Qiu L G, Jiang X. Controlled synthesis of novel Au@MIL-100 (Fe) core-shell nanoparticles with enhanced catalytic performance. Chemical Communications, 2013, 49(13): 1267–1269
https://doi.org/10.1039/C2CC33964A
98
Wang S, Zhang M, Zhang W. Yolk-shell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catalysis, 2011, 1(3): 207–211
https://doi.org/10.1021/cs1000762
99
Mitsudome T, Mikami Y, Matoba M, Mizugaki T, Jitsukawa K, Kaneda K. Design of a silver-cerium dioxide core-shell nanocomposite catalyst for chemoselective reduction reactions. Angewandte Chemie International Edition, 2012, 51(1): 136–139
https://doi.org/10.1002/anie.201106244
100
Wunder S, Lu Y, Albrecht M, Ballauff M. Catalytic activity of faceted gold nanoparticles studied by a model reaction: Evidence for substrate-induced surface restructuring. ACS Catalysis, 2011, 1(8): 908–916
https://doi.org/10.1021/cs200208a
101
Hsu S C, Liu S Y, Wang H J, Huang M H. Facet dependent surface plasmon resonance properties of Au-Cu2O core-shell nanocubes, octahedra, and rhombic dodecahedra. Small, 2015, 11(2): 195–201
https://doi.org/10.1002/smll.201401916
102
Rashid M, Mandal T K. Templateless synthesis of polygonal gold nanoparticles: An unsupported and reusable catalyst with superior activity. Advanced Functional Materials, 2008, 18(15): 2261–2271
https://doi.org/10.1002/adfm.200800085
103
Shi X, Ji Y, Hou S, Liu W, Zhang H, Wen T, Yan J, Song M, Hu Z, Wu X. Plasmon enhancement effect in Au gold nanorods@Cu2O core-shell nanostructures and their use in probing defect states. Langmuir, 2015, 31(4): 1537–1546
https://doi.org/10.1021/la503988e