Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2016, Vol. 10 Issue (1): 108-119   https://doi.org/10.1007/s11705-016-1553-7
  本期目录
Antioxidant and antitumor effects and immunomodulatory activities of crude and purified polyphenol extract from blueberries
Xiaohong Kou1,Lihua Han1,Xingyuan Li1,2,Zhaohui Xue1,*(),Fengjuan Zhou1,*()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Sinograin Oil (Tianjin) Corp., Tianjin 300461, China
 全文: PDF(1316 KB)   HTML
Abstract

The antioxidant and antitumor effects as well as the immunomodulatory activities of crude and purified polyphenol extract from blueberries were investigated. The antioxidant and antitumor effects of the polyphenol extract were measured both in vitro and in vivo, and their effect on the immune systems of CD-1 tumor-bearing mice were also analyzed. In vitro assays demonstrated that blueberry purified polyphenol extract (BBPP) exhibited higher antioxidant activities than blueberry crude polyphenol extract (BBCP), but the opposite effect was observed in vivo. Both the in vitro and in vivo antitumor activity and the immunity assay showed that BBCP not only inhibited tumor growth, but also significantly improved the immunity of the mice. According to physical and histological studies, the CD-1 tumor-bearing mice treated with the polyphenol extract, especially high doses of BBCP experienced a higher quality of life than the positive control group (treated with cyclophosphamide). These results indicate that BBCP has significant antioxidant and antitumor activities and that it can enhance the immunity of CD-1 tumor-bearing mice.

Key wordscrude polyphenol extract    purified polyphenol extract    blueberry    antioxidant    antitumor    immunity
收稿日期: 2015-10-07      出版日期: 2016-02-29
Corresponding Author(s): Zhaohui Xue,Fengjuan Zhou   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2016, 10(1): 108-119.
Xiaohong Kou,Lihua Han,Xingyuan Li,Zhaohui Xue,Fengjuan Zhou. Antioxidant and antitumor effects and immunomodulatory activities of crude and purified polyphenol extract from blueberries. Front. Chem. Sci. Eng., 2016, 10(1): 108-119.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-016-1553-7
https://academic.hep.com.cn/fcse/CN/Y2016/V10/I1/108
Groups Dose
NC 0.2 mL saline
TC 0.2 mL saline
PC 20 mg/(kg bw·d) CY, 0.2 mL saline
BBCP-LD 50 mg/(kg·d) BBCP-HD, 0.2 mL saline
BBCP-MD 100 mg/(kg·d) BBCP-MD, 0.2 mL saline
BBCP-HD 150 mg/(kg·d) BBCP-LD, 0.2 mL saline
BBPP-LD 50 mg/(kg·d) BBPP-HD, 0.2 mL saline
BBPP-MD 100 mg/(kg·d) BBPP-MD, 0.2 mL saline
BBPP-HD 150 mg/(kg·d) BBPP-LD, 0.2 mL saline
Tab.1  
Fig.1  
Peak Retention time/min [M – H] M Indentification
1 4.08 207/M – H+ 208 Uncertain
2 6.26 435/M+ H+ 434 Quercetin-3-O-hexose
3 8.58 463/M+ H+ 462 Quercetin-3-O-galactoside
4 11.12 491/M+ H+ 490 Uncertain
5 12.69 369/M – H+ 370 Mallow-3-arabinoside-5-glucoside
6 86.67 249/M – H+ 250 Uncertain
7 89.52 279/M – H+ 280 Uncertain
8 91.26 279/M – H+ 280 Uncertain
9 106.72 280/M+ 280 Uncertain
10 110.29 282/M+ 282 Uncertain
11 113.98 285/M – H+ 286 Didymin
12 115.24 291/M – H+ 292 Epicatechin
13 118.11 291/M – H+ 292 Epicatechin
Tab.2  
Fig.2  
Group Dose/(mg·kg–1) MDA content in liver/(nmol·mgprot–1) SOD activity in liver/(U·mgprot–1) MDA content in lung/(nmol·mgprot–1) SOD activity in lung/(U·mgprot–1) NO/(mmol·L–1) Spleen index/(mg·g–1) Thymus index/(mg·g–1) Tumor weight/g Weight gain/g DTH/mg Macrophages phagocytic/OD Spleen lymphocyte/OD
NC 0.91±0.17a) 323.93±20.12a) 1.04±0.07 205.4±10.82 6.7±0.54 30.54±3.66 6.23±0.12 6.02±0.45 3.52±0.21 5.87±0.57a) 3.04±0.25a)
TC 3.19±0.42b) 163.93±11.45b) 4.56±0.33b) 123.1±7.54b) 39.62±4.71b) 17.23±2.54 2.54±0.39 0.74±0.11 2.87±0.31 0.8±0.11 2.69±0.38 0.17±0.03
PC 20 2.54±0.31a,b) 112.46±9.80a,b) 4.23±0.41b) 97.8±5.21b) 27.57±2.33a,b) 17.67±1.85 3.51±0.43a) 0.25±0.04a) –1.25±0.18a) 1.1±0.17 3.03±0.41 0.49±0.09a)
BBCP-LD 50 2.27±0.34a,b) 200.32±9.93a,b) 3.01±0.28a,b) 133.8±6.29b) 19.56±2.03a,b) 22.36±2.61a) 3.71±0.26a) 0.57±0.03a) 2.60±0.37 1.95±0.24a) 3.76±0.42a) 1.38±0.09a)
BBCP-MD 100 1.74±0.27a,b) 230.40±14.71a,b) 2.32±0.31a,b) 152.0±5.47a,b) 16.42±1.28a,b) 23.93±2.17a) 4.58±0.35a) 0.52±0.03a) 3.76±0.42a) 2.62±0.37a) 4.59±0.31a) 1.73±0.31a)
BBCP-HD 150 1.29±0.19a) 265.80±15.28a) 2.00±0.35a,b) 179.0±6.33a,b) 10.92±0.78a,b) 25.37±1.45a) 5.03±0.42a) 0.48±0.06a) 4.87±0.39a) 2.96±0.33a) 5.22±0.28a) 2.58±0.33a)
BBPP-LD 50 2.23±0.35a,b) 198.75±8.79a,b) 3.07±0.41a,b) 117.4±4.37b) 33.66±3.55b) 20.34±1.65a) 3.47±0.33a) 0.66±0.12a) 2.34±0.14 1.75±0.16a) 3.42±0.27a) 1.29±0.12a)
BBPP-MD 100 1.87±0.24a,b) 210.21±15.65a,b) 2.54±0.36a,b) 130.0±3.19a,b) 24.52±2.37a,b) 22.43±2.14a) 3.86±0.28a) 0.61±0.09a) 3.58±0.41a) 1.99±0.22a) 4.06±0.53a) 1.61±0.23a)
BBPP-HD 150 1.65±0.08a,b) 220.95±15.69a,b) 2.20±0.19a,b) 145.0±5.44a,b) 19.47±1.70a,b) 23.25±3.12a) 4.24±0.44a) 0.57±0.04a) 4.12±0.36a) 2.46±0.31a) 4.91±0.64a) 2.26±0.21a)
Tab.3  
Fig.3  
Fig.4  
Fig.5  
1 Cheng  A W, Yan  H Q, Han  C J, Wang  W L, Tian  Y Q, Chen  X Y. Polyphenols from blueberries modulate inflammation cytokines in LPS-induced RAW264.7 macrophages. International Journal of Biological Macromolecules, 2014, 69(6): 382–387
https://doi.org/10.1016/j.ijbiomac.2014.05.071
2 Leiva-Valenzuela  G A, Aguilera  J M. Automatic detection of orientation and diseases in blueberries using image analysis to improve their postharvest storage quality. Food Control, 2013, 33(1): 166–173
https://doi.org/10.1016/j.foodcont.2013.02.025
3 Bhullar  K S, Rupasinghe  H P V. Antioxidant and cytoprotective properties of partridgeberry polyphenols. Food Chemistry, 2015, 168(1): 595–605
https://doi.org/10.1016/j.foodchem.2014.07.103
4 Kim  H G, Kim  G S, Park  S, Lee  J H, Seo  O N, Lee  S J, Kim  J H, Shim  J H, Abd El-Aty  A M, Jin  J S, Shin  S C, EI-Aty A M A, Jin J S, Shin S C. Flavonoid profiling in three citrus varieties native to the Republic of Korea using liquid chromatography coupled with tandem mass spectrometry: Contribution to overall antioxidant activity. Biomedical Chromatography, 2012, 26(4): 464–470
https://doi.org/10.1002/bmc.1688
5 Valavanidis  A, Vlachogianni  T. Studies in Natural Products Chemistry. Holland: Elsevier Press, 2013, 269–295
6 Vaithiyanathan  V, Mirunalini  S. Chemo preventive potential of fruit juice of Phyllanthu emblica Linn. (amla) against mammary cancer by altering oxidant/antioxidant status, lipid profile levels and estrogen/progesterone receptor status in female Sprague-Dawley rats. Biomedicine & Preventive Nutrition, 2013, 3(1): 357–366
https://doi.org/10.1016/j.bionut.2013.10.005
7 Senkus  E, Cardoso  F, Pagani  O. Time for more optimism in metastatic breast cancer?  Cancer Treatment Reviews, 2014, 40(2): 220–229
https://doi.org/10.1016/j.ctrv.2013.09.015
8 Grem  J L. 5-Fluorouracil: Forty-plus and still ticking: A review of its preclinical and clinical development. Investigational New Drugs, 2000, 18(4): 299–313
https://doi.org/10.1023/A:1006416410198
9 Siegel  R L, Miller  K D, Jemal  A. Cancer statistics. CA: a Cancer Journal for Clinicians, 2015, 65(1): 5–29
https://doi.org/10.3322/caac.21254
10 Xue  Z H, Gao  J, Zhang  Z J, Yu  W C, Wang  H, Kou  X H. Antihyperlipidemic and antitumor effects of chickpea albumin hydrolysate. Plant Foods for Human Nutrition (Dordrecht, Netherlands), 2012, 67(4): 393–400
https://doi.org/10.1007/s11130-012-0311-3
11 Rodriguez-Mateos  A, Cifuentes-Gomez  T, George  T W, Spencer  J P E. Impact of cooking, proving, and baking on the (poly)phenol content of wild blueberry. Journal of Agricultural and Food Chemistry, 2014, 62(18): 3979–3986
https://doi.org/10.1021/jf403366q
12 Cordova F M, Watson  R R. Food and supplement polyphenols action in cancer recurrence. San Diego: Academic Press, 2014, 191–195
13 Zhu  L C, Liu  X, Tan  J, Wang  B C. Influence of harvest season on antioxidant activity and constituents of rabbiteye blueberry (Vaccinium ashei) leaves. Journal of Agricultural and Food Chemistry, 2013, 61(8): 11477–11483
https://doi.org/10.1021/jf4035892
14 Li  C Y, Feng  J, Huang  W Y, An  X T. Composition of polyphenols and antioxidant activity of Rabbiteye blueberry (Vaccinium ashei) in Nanjing. Journal of Agricultural and Food Chemistry, 2013, 61(3): 523–531
https://doi.org/10.1021/jf3046158
15 Lau  F C, Bielinski  D F, Joseph  J A. Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. Journal of Neuroscience Research, 2007, 85(5): 1010–1017
https://doi.org/10.1002/jnr.21205
16 Dai  J, Mumper  R J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules (Basel, Switzerland), 2010, 15(10): 7313–7352
https://doi.org/10.3390/molecules15107313
17 Tsao  R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12): 1231–1246
https://doi.org/10.3390/nu2121231
18 Buran  T J, Sandhu  A K, Li  Z, Rock  C R, Yang  W W, Gu  L. Adsorption/desorption characteristics and separation of anthocyanins and polyphenols from blueberries using macroporous adsorbent resins. Journal of Food Engineering, 2014, 128(1): 167–168
https://doi.org/10.1016/j.jfoodeng.2013.12.029
19 Papandreou  M A, Dimakopoulou  A, Linardaki  Z I, Cordopatis  P, Zacas  D K, Margarity  M, Lamari  F N. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behavioural Brain Research, 2009, 198(2): 352–358
https://doi.org/10.1016/j.bbr.2008.11.013
20 Ozgen  M, Reese  R N, Tulio  A Z, Scheerens  J C, Miller  A R. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfnic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry, 2006, 54(1): 1151–1157
https://doi.org/10.1021/jf051960d
21 Yang  G Y, Yue  J, Gong  X C, Qian  B J, Wang  H J, Deng  Y, Zhao  Y Y. Blueberry leaf extract incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biology and Technology, 2014, 92(1): 46–53
https://doi.org/10.1016/j.postharvbio.2014.01.018
22 Cao  L, Liu  X Z, Qian  T X, Sun  G B, Guo  Y, Chang  F J, Zhou  S M, Sun  X B. Antitumor and immunomodulatory activity of arabinoxylans: A major constituent of wheat bran. International Journal of Biological Macromolecules, 2011, 48(1): 160–164
https://doi.org/10.1016/j.ijbiomac.2010.10.014
23 Fan  M Z, Li  C R, Li  Z Z, Lv  Z M, Shi  G Y, Chen  X X. Evaluation on immunity function of “strong” cordyceps mecylium capsules. Microbiology-Sgm, 2000, 27(1): 19–22
24 Ignat  I, Volf  I, Popa  V I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry, 2011, 126(1): 1821–1835
https://doi.org/10.1016/j.foodchem.2010.12.026
25 Oszmianski  J, Wojdylo  A, Gorzelany  J, Kapusta  I. Identification and characterization of low molecular weight polyphenols in berry leaf by HPLC-DAD and LC-ESI/MS. Journal of Agricultural and Food Chemistry, 2011, 59(24): 12830–12835
https://doi.org/10.1021/jf203052j
26 Chun  O K, Kim  D O, Lee  C Y. Superoxide radical scavenging activity of the major polyphenols in fresh plums. Journal of Agricultural and Food Chemistry, 2003, 51(27): 8067–8072
https://doi.org/10.1021/jf034740d
27 Chun  O K, Kim  D O, Moon  H Y, Kang  H G, Lee  C Y. Contribution of individual polyphenolics to total antioxidant capacity of plums. Journal of Agricultural and Food Chemistry, 2003, 51(25): 7240–7245
https://doi.org/10.1021/jf0343579
28 Khanal  R, Howard  L R, Prior  R L. Urinary excretion of phenolic acids in rats fed cranberry, blueberry, or Black Raspberry Powder. Journal of Agricultural and Food Chemistry, 2014, 62(18): 3987–3996
https://doi.org/10.1021/jf403883r
29 Giovanelli  G, Buratti  S. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chemistry, 2009, 112(4): 903–908
https://doi.org/10.1016/j.foodchem.2008.06.066
30 Hwang  J Y, Shue  Y S, Chang  H M. Antioxidative activity of roasted and defatted peanut kernels. Food Research International, 2001, 34(7): 639–647
https://doi.org/10.1016/S0963-9969(01)00083-7
31 Shon  M Y, Kim  T H, Sung  N J. Antioxidant and free radical scavenging activity of Phellinus baumii (phellinus of hymenochaetaceae) extract. Food Chemistry, 2003, 82(4): 593–597
https://doi.org/10.1016/S0308-8146(03)00015-3
32 Niki E. Antioxidant capacity: Which capacity and how to assess it? Journal of Berry Research, 2011, 1(4): 169–176
33 Malik  U U, Siddiqui  I A, Hashim  Z, Zatina  S. Measurement of serum paraoxonase activity and MDA concentrations in patients suffering with oral squamous cell carcinoma. Clinica Chimica Acta, 2014, 430(1): 38–42
https://doi.org/10.1016/j.cca.2013.12.033
34 Ji  P, Wei  Y M, Xue  W X, Hua  Y L, Zhang  M, Sun  H G, Song  Z X, Zhang  L, Li  J X, Zhao  H F, Zhang  W Q. Characterization and antioxidative activities of polysaccharide in Chinese angelica and its processed products. International Journal of Biological Macromolecules, 2014, 67(3): 195–200
https://doi.org/10.1016/j.ijbiomac.2014.03.025
35 Francis  C L, James  A J, Jane  E M, Wilhelmina  K. Attenuation of iNOS and COX2 by blueberry polyphenols is mediated through the suppression of NF-kB activation. Journal of Functional Foods, 2009, 1(1): 274–283
36 Sun  T, Chen  Q Y, Wu  L J, Yao  X M, Sun  X J. Antitumor and antimetastatic activities of grape skin polyphenols in a murine model of breast cancer. Food and Chemical Toxicology, 2012, 50(10): 3462–3467
https://doi.org/10.1016/j.fct.2012.07.037
37 Wang  D, Sun  S Q, Wu  W Z, Yang  S L, Tan  J M. Characterization of a water-soluble polysaccharide from Boletus edulis and its antitumor and immunomodulatory activities on renal cancer in mice. Carbohydrate Polymers, 2014, 105(1): 127–134
https://doi.org/10.1016/j.carbpol.2013.12.085
38 Xu  H S, Wu  Y W, Xu  S F, Sun  H X, Che  F Y, Yao  L. Antitumor and immunomodulatory activity of polysaccharides from the roots of Actinidia eriantha.  Journal of Ethnopharmacology, 2009, 125(2): 310–317
https://doi.org/10.1016/j.jep.2009.06.015
39 Cheng  A W, Yan  H Q, Han  C J, Wang  W L, Tian  Y Q, Chen  Y Q. Polyphenols from blueberries modulate inflammation cytokines in LPS-induced RAW264.7 macrophages. International Journal of Biological Macromolecules, 2014, 69(1): 382–387
https://doi.org/10.1016/j.ijbiomac.2014.05.071
40 Sun  X, Gao  R L, Xiong  Y K, Huang  Q C, Xu  M. Antitumor and immunomodulatory effects of a water-soluble polysaccharide from Lilii Bulbus in mice. Carbohydrate Polymers, 2014, 102(16): 543–549
https://doi.org/10.1016/j.carbpol.2013.12.002
41 Roopchand  D E, Kuhn  P, Rojo  L E, Lila  M A, Raskin  L. Blueberry polyphenol-enriched soybean flour reduces hyperglycemia, body weight gain and serum cholesterol in mice. Pharmacological Research, 2013, 68(1): 59–67
https://doi.org/10.1016/j.phrs.2012.11.008
42 Tang  X H, Yan  L F, Gao  J, Yang  X L, Xu  Y X, Ge  H Y, Yang  H D. Antitumor and immunomodulatory activity of polysaccharides from the root of limonium sinense kuntze. International Journal of Biological Macromolecules, 2012, 51(5): 1134–1139
https://doi.org/10.1016/j.ijbiomac.2012.08.037
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed