Nucleic acid crystallization and X-ray crystallography facilitated by single selenium atom
Wen Zhang1,2,3,Jack W. Szostak2,Zhen Huang1,3,*()
1. Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA 2. Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA 3. College of Life Sciences, Sichuan University, Chengdu 610041, China
X-ray crystallography is a powerful strategy for 3-D structure determination of macromolecules, such as nucleic acids and protein-nucleic acid complexes. However, the crystallization and phase determination are the major bottle-neck problems in crystallography. Recently we have successfully developed synthesis and strategy of selenium-derivatized nucleic acids (SeNA) for nucleic acid crystallography. SeNA might not only provide the rational strategies to solve the phase determination problem, but also offer a potential strategy to explore crystallization solutions.
. [J]. Frontiers of Chemical Science and Engineering, 2016, 10(2): 196-202.
Wen Zhang,Jack W. Szostak,Zhen Huang. Nucleic acid crystallization and X-ray crystallography facilitated by single selenium atom. Front. Chem. Sci. Eng., 2016, 10(2): 196-202.
Shu Y, Pi F, Sharma A, Rajabi M, Haque F, Shu D, Leggas M, Evers B M, Guo P. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Advanced Drug Delivery Reviews, 2014, 66: 74–89
https://doi.org/10.1016/j.addr.2013.11.006
6
Zhang W, Huang Z. Synthesis of the 5′-se-thymidine phosphoramidite and convenient labeling of DNA oligonucleotide. Organic Letters, 2011, 13(8): 2000–2003
https://doi.org/10.1021/ol200397c
7
Sha R, Birktoft J J, Nguyen N, Chandrasekaran A R, Zheng J, Zhao X, Mao C, Seeman N C. Self-assembled DNA crystals: The impact on resolution of 5′-phosphates and the DNA source. Nano Letters, 2013, 13(2): 793–797
https://doi.org/10.1021/nl304550c
8
Han D, Jiang S, Samanta A, Liu Y, Yan H. Unidirectional scaffold–strand arrangement in DNA origami. Angewandte Chemie International Edition, 2013, 52(34): 9031–9034
https://doi.org/10.1002/anie.201302177
Lim K W, Phan A T. Structural basis of DNA quadruplex-duplex junction formation. Angewandte Chemie, 2013, 125(33): 8728–8731
https://doi.org/10.1002/ange.201302995
Lin L, Sheng J, Huang Z. Nucleic acid X-ray crystallography via direct selenium derivatization. Chemical Society Reviews, 2011, 40(9): 4591–4602
https://doi.org/10.1039/c1cs15020k
14
Zheng J, Birktoft J J, Chen Y, Wang T, Sha R, Constantinou P E, Ginell S L, Mao C, Seeman N C. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature, 2009, 461(7260): 74–77
https://doi.org/10.1038/nature08274
15
Egli M, Saenger W. In Principles of Nucleic Acid Structure. New York: Springer, 2013, 29–50
16
Berzelius J, Lettre de M, Berzelius à M. Berthollet sur deux métaux nouveaux. Letter from Mr.Berzelius to Mr. Berthollet on two new metals. Annales de chimie et de physique, series, 1818, 2: 199–206
Zinoni F, Birkmann A, Stadtman T C, Böck A. Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(13): 4650–4654
https://doi.org/10.1073/pnas.83.13.4650
20
Böck A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F. Selenocysteine: The 21st amino acid. Molecular Microbiology, 1991, 5(3): 515–520
https://doi.org/10.1111/j.1365-2958.1991.tb00722.x
21
Hoffman J L, McConnell K P. The presence of 4-selenouridine in Escherichia coli tRNA. Biochimica et Biophysica Acta (BBA)-. Nucleic Acids and Protein Synthesis, 1974, 366(1): 109–113
22
Veres Z, Tsai L, Scholz T D, Politino M, Balaban R S, Stadtman T C. Synthesis of 5-methylaminomethyl-2-selenouridine in tRNAs: 31P NMR studies show the labile selenium donor synthesized by the selD gene product contains selenium bonded to phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(7): 2975–2979
https://doi.org/10.1073/pnas.89.7.2975
23
Hendrickson W A, Pähler A, Smith J L, Satow Y, Merritt E A, Phizackerley R P. Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(7): 2190–2194
https://doi.org/10.1073/pnas.86.7.2190
24
Hendrickson W A, Smith J L, Phizackerley R P, Merritt E A. Crystallographic structure analysis of lamprey hemoglobin from anomalous dispersion of synchrotron radiation. Proteins, 1988, 4(2): 77–88
https://doi.org/10.1002/prot.340040202
25
Hendrickson W A, Horton J R, Murthy H K, Pahler A, Smith J L. Multiwavelength anomalous diffraction as a direct phasing vehicle in macromolecular crystallography. In Synchrotron Radiation in Structural Biology. New York: Springer, 1989, 317–324
26
Hendrickson W A, Horton J R, LeMaster D M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): A vehicle for direct determination of three-dimensional structure. EMBO Journal, 1990, 9(5): 1665–1672
27
Deacon A, Ealick S. Selenium-based MAD phasing: Setting the sites on larger structures. Structure (London, England), 1999, 7(7): 161–166
https://doi.org/10.1016/S0969-2126(99)80096-3
28
Carrasco N, Ginsburg D, Du Q, Huang Z. Synthesis of selenium-derivatized nucleosides and oligonucleotides for X-ray crystallography. Nucleosides, Nucleotides & Nucleic Acids, 2001, 20(9): 1723–1734
https://doi.org/10.1081/NCN-100105907
29
Sheng J, Huang Z. Selenium derivatization of nucleic acids for X-ray crystal–structure and function studies. Chemistry & Biodiversity, 2010, 7(4): 753–785
https://doi.org/10.1002/cbdv.200900200
30
Zhang W, Sheng J, Huang Z. Structures and functions of nucleic acids modified with S, Se, and Te and complexed with small molecules. Medicinal Chemistry of Nucleic Acids, 2011: 101–141
31
Jiang J, Sheng J, Carrasco N, Huang Z. Selenium derivatization of nucleic acids for crystallography. Nucleic Acids Research, 2007, 35(2): 477–485
https://doi.org/10.1093/nar/gkl1070
32
Teplova M, Wilds C J, Wawrzak Z, Tereshko V, Du Q, Carrasco N, Huang Z, Egli M. Covalent incorporation of selenium into oligonucleotides for X-ray crystal structure determination via MAD: Proof of principle. Biochimie, 2002, 84(9): 849–858
https://doi.org/10.1016/S0300-9084(02)01440-2
33
Ferré-D’Amaré A R, Zhou K, Doudna J A. A general module for RNA crystallization. Journal of Molecular Biology, 1998, 279(3): 621–631
https://doi.org/10.1006/jmbi.1998.1789
Salon J, Chen G, Portilla Y, Germann M W, Huang Z. Synthesis of a 2'-Se-uridine phosphoramidite and its incorporation into oligonucleotides for structural study. Organic Letters, 2005, 7(25): 5645–5648
https://doi.org/10.1021/ol052270y
36
Du Q, Carrasco N, Teplova M, Wilds C J, Egli M, Huang Z. Internal derivatization of oligonucleotides with selenium for X-ray crystallography using MAD. Journal of the American Chemical Society, 2002, 124(1): 24–25
https://doi.org/10.1021/ja0171097
37
Carrasco N, Buzin Y, Tyson E, Halpert E, Huang Z. Selenium derivatization and crystallization of DNA and RNA oligonucleotides for X-ray crystallography using multiple anomalous dispersion. Nucleic Acids Research, 2004, 32(5): 1638–1646
https://doi.org/10.1093/nar/gkh325
38
Sheng J, Salon J, Gan J, Huang Z. Synthesis and crystal structure study of 2′-Se-adenosine-derivatized DNA. Science China. Chemistry, 2010, 53(1): 78–85
https://doi.org/10.1007/s11426-010-0012-4
39
Salon J, Sheng J, Gan J, Huang Z. Synthesis and crystal structure of 2′-Se-modified guanosine containing DNA. Journal of Organic Chemistry, 2010, 75(3): 637–641
https://doi.org/10.1021/jo902190c
40
Sheng J, Jiang J, Salon J, Huang Z. Synthesis of a 2'-Se-thymidine phosphoramidite and its incorporation into oligonucleotides for crystal structure study. Organic Letters, 2007, 9(5): 749–752
https://doi.org/10.1021/ol062937w
41
Moroder H, Kreutz C, Lang K, Serganov A, Micura R. Synthesis, oxidation behavior, crystallization and structure of 2'-methylseleno guanosine containing RNAs. Journal of the American Chemical Society, 2006, 128(30): 9909–9918
https://doi.org/10.1021/ja0621400
42
Höbartner C, Rieder R, Kreutz C, Puffer B, Lang K, Polonskaia A, Serganov A, Micura R. Syntheses of RNAs with up to 100 nucleotides containing site-specific 2'-methylseleno labels for use in X-ray crystallography. Journal of the American Chemical Society, 2005, 127(34): 12035–12045
https://doi.org/10.1021/ja051694k
43
Olieric V, Rieder U, Lang K, Serganov A, Schulze-Briese C, Micura R, Dumas P, Ennifar E. A fast selenium derivatization strategy for crystallization and phasing of RNA structures. RNA (New York, N.Y.), 2009, 15(4): 707–715
https://doi.org/10.1261/rna.1499309
44
Sheng J, Gan J, Soars A S, Salon J, Huang Z. Structural insights of non-canonical U·U pair and Hoogsteen interaction probed with Se atom. Nucleic Acids Research, 2013, 41(22): 10476–10487
https://doi.org/10.1093/nar/gkt799
45
Salon J, Gan J, Abdur R, Liu H, Huang Z. Synthesis of 6-Se-guanosine RNAs for structural study. Organic Letters, 2013, 15(15): 3934–3937
https://doi.org/10.1021/ol401698n
46
Abdur R, Gerlits O O, Gan J, Jiang J, Salon J, Kovalevsky A Y, Chumanevich A A, Weber I T, Huang Z. Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides. Acta Crystallographica. Section D, Biological Crystallography, 2014, 70(2): 354–361
https://doi.org/10.1107/S1399004713027922
47
Hassan A E, Sheng J, Zhang W, Huang Z. High fidelity of base pairing by 2-selenothymidine in DNA. Journal of the American Chemical Society, 2010, 132(7): 2120–2121
https://doi.org/10.1021/ja909330m
48
Zhang L, Yang Z, Sefah K, Bradley K M, Hoshika S, Kim M J, Kim H J, Zhu G, Jimenez E, Cansiz S, Teng I T, Champanhac C, McLendon C, Liu C, Zhang W, Gerloff D L, Huang Z, Tan W, Benner S A. Evolution of functional six-nucleotide DNA. Journal of the American Chemical Society, 2015, 137(21): 6734–6737
https://doi.org/10.1021/jacs.5b02251