Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2016, Vol. 10 Issue (2): 238-244   https://doi.org/10.1007/s11705-016-1566-2
  本期目录
Functional characterization of a thermostable methionine adenosyltransferase from Thermus thermophilus HB27
Yanhui Liu,Biqiang Chen,Zheng Wang,Luo Liu(),Tianwei Tan()
Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
 全文: PDF(398 KB)   HTML
文章导读  
Abstract

MATTt (a thermostable methionine adenosyltransferase from Thermus thermophilus HB27) was overexpressed in Escherchia coli and purified using Ni-NTA affinity column. The enzymatic activity of MATTt was investigated in a temperature range from 30 °C to 90 °C, showing that MATTt exhibited a high enzymatic activity and good thermostability at 80 °C. Circular dichroism spectra reveals that MATTt contains high portion of β-sheet structures contributing to the thermostability of MATTt. The kinetic parameter, Km is 4.19 mmol/L and 1.2 mmol/L for ATP and methionine, respectively. MATTt exhibits the highest enzymatic activity at pH 8. Cobalt (Co2+) and zinc ion (Zn2+) enhances remarkably the activity of MATTt compared to the magnesium ion (Mg2+). All these results indicated that the thermostable MATTt has great potential for industry applications.

Key wordsion-preference    methionine adenosyltransferase    secondary structure    thermostability    Thermus thermophilus
收稿日期: 2015-10-27      出版日期: 2016-05-19
Corresponding Author(s): Luo Liu,Tianwei Tan   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2016, 10(2): 238-244.
Yanhui Liu,Biqiang Chen,Zheng Wang,Luo Liu,Tianwei Tan. Functional characterization of a thermostable methionine adenosyltransferase from Thermus thermophilus HB27. Front. Chem. Sci. Eng., 2016, 10(2): 238-244.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-016-1566-2
https://academic.hep.com.cn/fcse/CN/Y2016/V10/I2/238
Fig.1  
Fig.2  
Fig.3  
Organism Vmax /(µmol·min–1·mg–1) Km (ATP) /(mmol/L) Km (methionine) /(mmol/L) Temperature /°C Ref.
T. thermophilus 0.84 4.19 1.2 70 This study
M. jannaschiia 3.0 0.25 0.14 70 [25]
E. coli 1.2 0.11 0.08 25 [26]
H. sapiens 0.2 0.03 0.003 37 [27]
B. subtilis 0.36 0.92 0.26 37 [14]
Tab.1  
Fig.4  
Fig.5  
Program Secondary structure Temperature /°C
25 70 80 90
K2D2 α-helix/% 15.97 12.52 3.44 3.69
β-sheet/% 30.83 35.2 47.08 44.51
SELCON3 α-helix/% 81.1 81.1 46.6 43.9
β-sheet/% 0.8 0.6 12.0 28.7
β-turns/% 7.1 6.7 24.2 21.7
Random coils/% 16.1 15.7 33.4 33.1
Tab.2  
Fig.6  
Fig.7  
Fig.8  
1 Catoni G L. S-Adenosylmethionine: A new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. Journal of Biological Chemistry, 1953, 204: 403–416
2 Fontecave M, Atta M, Mulliez E. S-adenosylmethionine: Nothing goes to waste. Trends in Biochemical Sciences, 2004, 29(5): 243–249
3 Momparler R L, Bovenzi V. DNA methylation and cancer. Journal of Cellular Physiology, 2000, 183: 145–154
4 Dording C M, Mischoulon D, Shyu I. SAMe and sexual functioning. European Psychiatry, 2012, 27(6): 451–454
5 Friedel H A, Goa K L, Benfield P. S-adenosyl-L-methionine: A review of its pharmacological properties and therapeutic potential in liver dysfunction and affective disorders in relation to its physiological role in cell metabolism. Drugs, 1989, 38: 389–416
6 Lieber C S. S-adenosyl-L-methionine: Its role in the treatment of liver disorders. American Journal of Clinical Nutrition, 2002, 76: 1183S–1187S
7 Lu Z J, Markham G D. Enzymatic properties of S-adenosylmethionine synthetase from the archaeon Methanococcus jannaschii. Journal of Biological Chemistry, 2002, 277: 16624–16631
8 Komoto J, Yamada T, Takata Y. Crystal structure of the S-adenosylmethionine synthetase ternary complex: A novel catalytic mechanism of S-adenosylmethionine synthesis from ATP and Met. Biochemistry, 2004, 4: 1821–1831
9 Porcelli M, Caccilapuoti G, Carteni-farina M, Gambacorta A. S-denosylmethionine synthetase in the thermophilic archaebacterium Sulfolobus solfataricus. Purification and characterization of two isoforms. European Journal of Biochemistry, 1988, 177: 273–280
10 Garrido F, Estrela S, Alves S. Refolding and characterization of methionine adenosyltransferase from Euglena gracilis. Protein Expression and Purification, 2011, 79: 128–136
11 Markham G D, Deparsis J, Gatmaitan J. The sequence of metK, the structural gene for S-adenosylmethionine synthetase in Escherichia coli. Journal of Biological Chemistry, 1984, 259: 14505–14507
12 Yoon G S, Ko K H, Kang H W. Characterization of S-adenosylmethionine synthetase from Streptomyces avermitilis NRRL8165 and its effect on antibiotic production. Enzyme and Microbial Technology, 2006, 39(3): 466–473
13 Slapeta J, Stejskal F, Keithly J S. Characterization of s-adenosylmethionine synthetase in Cryptosporidium parvum (apicomplexa). FEMS Microbiology Letters, 2003, 225(2): 271–277
14 Kamarthapu V, Rao K V, Srinivas P N B S, Reddy G B, Reddy V D. Structural and kinetic properties of Bacillus subtilis s-adenosylmethionine synthetase expressed in Escherichia coli. Biochimica et Biophysica Acta, 2008, 1784(12): 1949–1958
15 Burk M J, Van Dien S. Biotechnology for chemical production: Challenges and opportunities. Trends in Biotechnology, 2015, 34(3): 187–190
16 Oshima T, Imahori K. Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. International Journal of Systematic Bacteriology, 1974, 24: 102–112
17 Liu Y H, Song J N, Tan T W, Liu L. Production of fumaric acid from l-malic acid by solvent engineering using a recombinant thermostable fumarase from Thermus thermophilus HB8. Applied Biochemistry and Biotechnology, 2015, 175(6): 2823–2831
18 Henne A, Brüggemann H, Raasch C. The genome sequence of the extreme thermophile Thermus thermophilus. Nature Biotechnology, 2004, 22: 547–553
19 Chang Y L, Hsieh C L, Huang Y M. Modified method for determination of sulfur metabolites in plant tissues by stable isotope dilution-based liquid chromatography-electrospray ionization-tandem mass spectrometry. Analytical Biochemistry, 2013, 442: 24–33
20 Carolina P, Miguel A A. K2D2: Estimation of protein secondary structure from circular dichroism spectra. BMC Structural Biology, 2008, 8: 25
21 Whitmore L, Wallace B A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers, 2008, 89: 392–400
22 Thompson J D, Gibson T J, Plewniak F. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25: 4876–4882
23 Page R D. TreeView: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences: CABIOS, 1996, 12(4): 357–358
24 Deckert G, Warren P V, Gaasterland T. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature, 1998, 392: 353–358
25 Graham D E, Bock C L, Schalk-Hihi C, Lu Z J, Markham G D. Identification of a highly diverged class of S-adenosylmethionine synthetases in the archaea. Journal of Biological Chemistry, 2000, 275: 4055–4059
26 Markham G D, Hafner E W, Tabor C W. S-Adenosylmethionine synthetase from Escherichia coli. Journal of Biological Chemistry, 1980, 255: 9082–9092
27 Kotb M, Kredich N M. S-Adenosylmethionine synthetase from human lymphocytes. Purification and characterization. Journal of Biological Chemistry, 1985, 260: 3923–3930
28 Takusagawa F, Kamitori S, Misaki S. Crystal structure of S-adenosylmethionine synthetase. Journal of Biological Chemistry, 1996, 271: 136–147
29 Luo Y, Yuan Z, Luo G. Expression of secreted His-tagged S-adenosylmethionine synthetase in the methylotrophic yeast <?Pub Caret?>Pichia pastoris and its characterization, one-step purification, and immobilization. Biotechnology Progress, 2008, 24: 214–220
30 Markham G D, Pajares M A. Structure-function relationships in methionine adenosyltransferases. Cellular and Molecular Life Sciences, 2009, 66: 636–648
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed