Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2017, Vol. 11 Issue (1): 15-26   https://doi.org/10.1007/s11705-017-1629-z
  本期目录
 
 
 
Genetic biosensors for small-molecule products: Design and applications in high-throughput screening
Qingzhuo Wang1,2,Shuang-Yan Tang3(),Sheng Yang1,4()
1. Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200025, China
2. University of the Chinese Academy of Sciences, Beijing 100049, China
3. CAS Key Laboratory of Microbial Physiological and Metebolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
4. Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
 全文: PDF(285 KB)   HTML
文章导读  
摘要: 
关键词      
Abstract

Overproduction of small-molecule chemicals using engineered microbial cells has greatly reduced the production cost and promoted environmental protection. Notably, the rapid and sensitive evaluation of the in vivo concentrations of the desired products greatly facilitates the optimization process of cell factories. For this purpose, many genetic components have been adapted into in vivo biosensors of small molecules, which couple the intracellular concentrations of small molecules to easily detectable readouts such as fluorescence, absorbance, and cell growth. Such biosensors allow a high-throughput screening of the small-molecule products, and can be roughly classified as protein-based and RNA-based biosensors. This review summarizes the recent developments in the design and applications of biosensors for small-molecule products.

Key wordsbiosensor    small molecule product    transcription factor    riboswitch    high-throughput screening
收稿日期: 2016-07-15      出版日期: 2017-03-17
PACS:     
基金资助: 
Corresponding Author(s): Shuang-Yan Tang,Sheng Yang   
 引用本文:   
.  [J]. Frontiers of Chemical Science and Engineering, 2017, 11(1): 15-26.
Qingzhuo Wang, Shuang-Yan Tang, Sheng Yang. Genetic biosensors for small-molecule products: Design and applications in high-throughput screening. Front. Chem. Sci. Eng., 2017, 11(1): 15-26.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-017-1629-z
https://academic.hep.com.cn/fcse/CN/Y2017/V11/I1/15
Fig.1  
Fig.2  
Type of target molecule Target molecule Type of biosensor Host cells Screen method Reporter Sensor module (source) Effect module (source) Ref.
Amino acids L -Lysine RNA Escherichia coli Growth selection TetA-GFP 5'-UTR region of lysC gene (Escherichia coli) [42,67]
L -Tryptophan RNA Escherichia coli Growth selection TetA-GFP 5'UTR region of lysC gene (Escherichia coli) [42]
L -Lysine TF Corynebacterium glutamicum FACS EYFP LysG (Corynebacterium glutamicum) Promoter PlysE [28,58]
L -Arginine TF Escherichia coli ? EYFP ArgP (Escherichia coli) Promoter PargO [28]
L -Serine TF Corynebacterium glutamicum ? EYFP NCgl0581
(Escherichia coli)
Promoter PNCgl0580 [28]
L -Arginine, L -Histidine TF Corynebacterium glutamicum FACS EYFP LysG (Corynebacterium glutamicum) Promoter PlysE [28,59]
L -Methionine, L -Leucine, L -Isoleucine TF Corynebacterium glutamicum FACS EYFP Lrp (Corynebacterium glutamicum) Promoter PbrnF [61]
L -Valine TF Corynebacterium glutamicum FACS EYFP Lrp (Corynebacterium glutamicum) Promoter PbrnF [61,62]
L -Tyrosine TF Escherichia coli ? MutD5-mCherry TyrR
(Escherichia coli)
Promoter ParoF [86]
L -Leucine FRET Escherichia coli ? CFP+YFP LivK (Escherichia coli) [66]
L -Methionine FRET Escherichia coli/Saccharomyces cerevisiae ? CFP+YFP MetN (Escherichia coli) [65]
L -Threonine Stress-response promoter Escherichia coli FACS EGFP Fusion promoter cysJHp (Escherichia coli) [68]
L -Phenylalanine Stress-response promoter Escherichia coli FACS GFP-Mut2 Promoter Pmtr (Escherichia coli) [70]
L -Lysine Stress-response promoter Escherichia coli FACS EGFP Promoter pA (Corynebacterium glutamicum) [87]
[88]
Organic acids Benzoate, 2-Hydroxybenzoate TF Escherichia coli Growth selection LacZ/TetA NahR (Pseudomonas putida) Promoter Psal [74]
Benzoate TF Escherichia coli 96-well plates GFP BenR (Metagenome) Promoter PBenA [73]
Mevalonate TF Escherichia coli FACS/visual observation GFPuv/LacZ AraC-mev Promoter PBAD [78]
Triacetic acid lactone TF Escherichia coli FACS
/visual observation
GFPuv/LacZ AraC-TAL Promoter PBAD [79]
Ectoine TF Escherichia coli FACS GFPuv AraC-ect Promoter PBAD [76]
Adipate TF Escherichia coli ? TetA-GFP PcaR (Pseudomonas putida) Promoter PcaIJ [71]
Glucaric acid TF Escherichia coli Growth selection TolC CdaR (Escherichia coli) Promoter gudPp [75]
Succinate Two-component system Escherichia coli ? TetA DcuR/DcuS (Escherichia coli) Promoter PdctA [71]
Medium-chain fatty acids (C8-C12) G-protein coupled receptor sensor Saccharomyces cerevisiae ? GFP Olfactory receptor OR1G1/ Free fatty acid receptor GPR40 TF-promoter pairs [77]
Alcohols Linear alcohols ( L -butanol, L -pentanol, L -hexanol) TF Escherichia coli Growth selection TetA-GFP BomR (Thauera butanivorans) Promoter PBMO [71]
Branched-chain alcohols (2-Methyl- L -propanol, 2-methyl- L -butanol, 3-methyl- L -butanol) TF Escherichia coli ? TetA-GFP BomR (Thauera butanivorans) Promoter PBMO [71]
1,4-Butanediol TF Escherichia coli ? TetA-GFP BomR (Thauera butanivorans) Promoter PBMO [71]
1,4-Butanediol Stress-response promoter Escherichia coli ? GFP Promoter PyhjX [72]
Flavonoids Kaempferol TF Escherichia coli 96-Well plates GFP QdoR (Bacillus subtilis) Promoter PqdoI [81]
Quercetin TF Escherichia coli ? GFP QdoR (Bacillus subtilis) Promoter PqdoI [81]
Naringenin TF Escherichia coli ? GFP FdeR (Herbaspirillum seropedicae) Promoter PfdeA [81]
Naringenin TF Escherichia coli Growth selection TolC TtgR (Pseudomonas putida) Promoter ttgAp [75]
Theophylline Theophylline RNA Escherichia coli Growth selection Thymidylate synthase Synthetic aptamer mTCT8-4 aptamer Group I aptazyme (Bacteriophage T4) [85]
Theophylline RNA Escherichia coli Growth selection LacZ/CAT/GFP/TetA Synthetic aptamer mTCT8-4 aptamer RBS [45,48]
Theophylline RNA Saccharomyces cerevisiae FACS GFP Synthetic aptamer mTCT8-4 aptamer Hammerhead ribozyme [50,46,47]
Tab.1  
Fig.3  
1 Schallmey M, Frunzke J, Eggeling L, Marienhagen J. Looking for the pick of the bunch: High-throughput screening of producing microorganisms with biosensors. Current Opinion in Biotechnology, 2014, 26: 148–154
https://doi.org/10.1016/j.copbio.2014.01.005
2 Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J, . Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940–943
https://doi.org/10.1038/nature04640
3 Martin V J J, Pitera D J, Withers S T, Newman J D, Keasling J D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology, 2003, 21(7): 796–802
https://doi.org/10.1038/nbt833
4 Choi Y J, Lee S Y. Microbial production of short-chain alkanes. Nature, 2013, 502(7472): 571–574
https://doi.org/10.1038/nature12536
5 Dellomonaco C, Clomburg J M, Miller E N, Gonzalez R. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature, 2011, 476(7360): 355–359
https://doi.org/10.1038/nature10333
6 Enquist-Newman M, Faust A M E, Bravo D D, Santos C N S, Raisner R M, Hanel A, Sarvabhowman P, Le C, Regitsky D D, Cooper S R, . Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature, 2013, 505(7482): 239–243
https://doi.org/10.1038/nature12771
7 Becker J, Zelder O, Hafner S, Schroder H, Wittmann C. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metabolic Engineering, 2011, 13(2): 159–168
https://doi.org/10.1016/j.ymben.2011.01.003
8 Lee K H, Park J H, Kim T Y, Kim H U, Lee S Y. Systems metabolic engineering of Escherichia coli for L-threonine production. Molecular Systems Biology, 2007, 3(1): 149
9 Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, von Abendroth G, Zelder O, Wittmann C. From zero to hero—production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metabolic Engineering, 2014, 25: 113–123
https://doi.org/10.1016/j.ymben.2014.05.007
10 Zhang Y X, Perry K, Vinci V A, Powell K, Stemmer W P C, del Cardayre S B. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415(6872): 644–646
https://doi.org/10.1038/415644a
11 Wang H H, Isaacs F J, Carr P A, Sun Z Z, Xu G, Forest C R, Church G M. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894–898
https://doi.org/10.1038/nature08187
12 Cobb R E, Chao R, Zhao H M. Directed evolution: Past, present, and future. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(5): 1432–1440
https://doi.org/10.1002/aic.13995
13 Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology, 2005, 23(5): 612–616
https://doi.org/10.1038/nbt1083
14 Jantama K, Haupt M J, Svoronos S A, Zhang X L, Moore J C, Shanmugam K T, Ingram L O. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnology and Bioengineering, 2008, 99(5): 1140–1153
https://doi.org/10.1002/bit.21694
15 Dietrich J A, McKee A E, Keasling J D. High-throughput metabolic engineering: Advances in small-molecule screening and selection. Annual Review of Biochemistry, 2010, 79(1): 563–590
https://doi.org/10.1146/annurev-biochem-062608-095938
16 Kim Y, Ingram L O, Shanmugam K T. Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Applied and Environmental Microbiology, 2007, 73(6): 1766–1771
https://doi.org/10.1128/AEM.02456-06
17 Zhou S, Iverson A G, Grayburn W S. Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnology Letters, 2008, 30(2): 335–342
https://doi.org/10.1007/s10529-007-9544-x
18 Solem C, Dehli T, Jensen P R. Rewiring Lactococcus lactis for ethanol production. Applied and Environmental Microbiology, 2013, 79(8): 2512–2518
https://doi.org/10.1128/AEM.03623-12
19 Shen C R, Lan E I, Dekishima Y, Baez A, Cho K M, Liao J C. Driving forces enable high-titer anaerobic L-butanol synthesis in Escherichia coli. Applied and Environmental Microbiology, 2011, 77(9): 2905–2915
https://doi.org/10.1128/AEM.03034-10
20 Lim J H, Seo S W, Kim S Y, Jung G Y. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metabolic Engineering, 2013, 20: 49–55
https://doi.org/10.1016/j.ymben.2013.09.003
21 Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick J D, Osterhout R E, Stephen R, . Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nature Chemical Biology, 2011, 7(7): 445–452
https://doi.org/10.1038/nchembio.580
22 Ida Y, Hirasawa T, Furusawa C, Shimizu H. Utilization of saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Applied Microbiology and Biotechnology, 2013, 97(11): 4811–4819
https://doi.org/10.1007/s00253-013-4760-x
23 Zhang X, Jantama K, Moore J C, Shanmugam K T, Ingram L O. Production of L-alanine by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 2007, 77(2): 355–366
https://doi.org/10.1007/s00253-007-1170-y
24 Jantama K, Zhang X, Moore J C, Shanmugam K T, Svoronos S A, Ingram L O. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnology and Bioengineering, 2008, 101(5): 881–893
https://doi.org/10.1002/bit.22005
25 Klein-Marcuschamer D, Ajikumar P K, Stephanopoulos G. Engineering microbial cell factories for biosynthesis of isoprenoid molecules: Beyond lycopene. Trends in Biotechnology, 2007, 25(9): 417–424
https://doi.org/10.1016/j.tibtech.2007.07.006
26 Santos C N S, Stephanopoulos G. Melanin-based high-throughput screen for L-tyrosine production in Escherichia coli. Applied and Environmental Microbiology, 2008, 74(4): 1190–1197
https://doi.org/10.1128/AEM.02448-07
27 DeLoache W C, Russ Z N, Narcross L, Gonzales A M, Martin V J, Dueber J E. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015, 11(7): 465–471
https://doi.org/10.1038/nchembio.1816
28 Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, Eggeling L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biology, 2012, 13(5): 1
https://doi.org/10.1186/gb-2012-13-5-r40
29 Lin H, Tao H, Cornish V W. Directed evolution of a glycosynthase via chemical complementation. Journal of the American Chemical Society, 2004, 126(46): 15051–15059
https://doi.org/10.1021/ja046238v
30 Baker K, Bleczinski C, Lin H, Salazar-Jimenez G, Sengupta D, Krane S, Cornish V W. Chemical complementation: A reaction-independent genetic assay for enzyme catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(26): 16537–16542
https://doi.org/10.1073/pnas.262420099
31 Frommer W B, Davidson M W, Campbell R E. Genetically encoded biosensors based on engineered fluorescent proteins. Chemical Society Reviews, 2009, 38(10): 2833–2841
https://doi.org/10.1039/b907749a
32 Lalonde S, Ehrhardt D W, Frommer W B. Shining light on signaling and metabolic networks by genetically encoded biosensors. Current Opinion in Plant Biology, 2005, 8(6): 574–581
https://doi.org/10.1016/j.pbi.2005.09.015
33 Okumoto S, Looger L L, Micheva K D, Reimer R J, Smith S J, Frommer W B. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(24): 8740–8745
https://doi.org/10.1073/pnas.0503274102
34 de Lorimier R M, Smith J J, Dwyer M A, Looger L L, Sali K M, Paavola C D, Rizk S S, Sadigov S, Conrad D W, Loew L, . Construction of a fluorescent biosensor family. Protein Science, 2002, 11(11): 2655–2675
https://doi.org/10.1110/ps.021860
35 Fehr M, Lalonde S, Lager I, Wolff M W, Frommer W B. In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. Journal of Biological Chemistry, 2003, 278(21): 19127–19133
https://doi.org/10.1074/jbc.M301333200
36 Fehr M, Takanaga H, Ehrhardt D W, Frommer W B. Evidence for high-capacity bidirectional glucose transport across the endoplasmic reticulum membrane by genetically encoded fluorescence resonance energy transfer nanosensors. Molecular and Cellular Biology, 2005, 25(24): 11102–11112
https://doi.org/10.1128/MCB.25.24.11102-11112.2005
37 Kaper T, Lager I, Looger L L, Chermak D, Frommer W B. Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria. Biotechnology for Biofuels, 2008, 1(1): 1
https://doi.org/10.1186/1754-6834-1-11
38 Fehr M, Frommer W B, Lalonde S. Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(15): 9846–9851
https://doi.org/10.1073/pnas.142089199
39 Deuschle K, Okumoto S, Fehr M, Looger L L, Kozhukh L, Frommer W B. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Science, 2005, 14(9): 2304–2314
https://doi.org/10.1110/ps.051508105
40 Okada S, Ota K, Ito T. Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor. Protein Science, 2009, 18(12): 2518–2527
https://doi.org/10.1002/pro.266
41 Serganov A, Nudler E. A decade of riboswitches. Cell, 2013, 152(1-2): 17–24
https://doi.org/10.1016/j.cell.2012.12.024
42 Yang J, Seo S W, Jang S, Shin S I, Lim C H, Roh T Y, Jung G Y. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nature Communications, 2013, 4: 7
https://doi.org/10.1038/ncomms2404
43 Wachsmuth M, Findeiss S, Weissheimer N, Stadler P F, Morl M. De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Research, 2013, 41(4): 2541–2551
https://doi.org/10.1093/nar/gks1330
44 Trausch J J, Ceres P, Reyes F E, Batey R T. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure (London, England), 2011, 19(10): 1413–1423
https://doi.org/10.1016/j.str.2011.06.019
45 Desai S K, Gallivan J P. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. Journal of the American Chemical Society, 2004, 126(41): 13247–13254
https://doi.org/10.1021/ja048634j
46 Win M N, Smolke C D. Higher-order cellular information processing with synthetic RNA devices. Science, 2008, 322(5900): 456–460
https://doi.org/10.1126/science.1160311
47 Michener J K, Smolke C D. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metabolic Engineering, 2012, 14(4): 306–316
https://doi.org/10.1016/j.ymben.2012.04.004
48 Eckdahl T T, Campbell A M, Heyer L J, Poet J L, Blauch D N, Snyder N L, Atchley D T, Baker E J, Brown M, Brunner E C, . Programmed evolution for optimization of orthogonal metabolic output in bacteria. PLoS One, 2015, 10(2): 0118322
https://doi.org/10.1371/journal.pone.0118322
49 Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818–822
https://doi.org/10.1038/346818a0
50 Win M N, Smolke C D. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(36): 14283–14288
https://doi.org/10.1073/pnas.0703961104
51 Ouellet J. RNA Fluorescence with light-up aptamers. Frontiers in Chemistry, 2016, 4: 29
52 Nakayama S, Luo Y, Zhou J, Dayie T K, Sintim H O. Nanomolar fluorescent detection of c-di-GMP using a modular aptamer strategy. Chemical Communications, 2012, 48(72): 9059–9061
https://doi.org/10.1039/c2cc34379g
53 Wang X C, Wilson S C, Hammond M C. Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP. Nucleic Acids Research, 2016, 44(17): e139–e139
https://doi.org/10.1093/nar/gkw580
54 Kellenberger C A, Hammond M C. In vitro analysis of riboswitch-Spinach aptamer fusions as metabolite-sensing fluorescent biosensors. Methods in Enzymology, 2015, 550: 147–172
https://doi.org/10.1016/bs.mie.2014.10.045
55 Paige J S, Nguyen-Duc T, Song W, Jaffrey S R. Fluorescence imaging of cellular metabolites with RNA. Science, 2012, 335(6073): 1194
https://doi.org/10.1126/science.1218298
56 Su Y, Hickey S F, Keyser S G, Hammond M C. In vitro and in vivo enzyme activity screening via RNA-based fluorescent biosensors for S-adenosyl-L-homocysteine (SAH). Journal of the American Chemical Society, 2016, 138(22): 7040–7047
https://doi.org/10.1021/jacs.6b01621
57 Kellenberger C A, Chen C, Whiteley A T, Portnoy D A, Hammond M C. RNA-based fluorescent biosensors for live cell imaging of second messenger cyclic di-AMP. Journal of the American Chemical Society, 2015, 137(20): 6432–6435
https://doi.org/10.1021/jacs.5b00275
58 Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L. Recombineering in corynebacterium glutamicum combined with optical nanosensors: A general strategy for fast producer strain generation. Nucleic Acids Research, 2013, 41(12): 6360–6369
https://doi.org/10.1093/nar/gkt312
59 Schendzielorz G, Dippong M, Grunberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L. Taking control over control: Use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synthetic Biology, 2014, 3(1): 21–29
https://doi.org/10.1021/sb400059y
60 Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch V F. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids. Journal of Biotechnology, 2012, 158(4): 231–241
https://doi.org/10.1016/j.jbiotec.2011.06.003
61 Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J. The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. Metabolic Engineering, 2012, 14(4): 449–457
https://doi.org/10.1016/j.ymben.2012.02.002
62 Mahr R, Gatgens C, Gatgens J, Polen T, Kalinowski J, Frunzke J. Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metabolic Engineering, 2015, 32: 184–194
https://doi.org/10.1016/j.ymben.2015.09.017
63 Mustafi N, Grunberger A, Mahr R, Helfrich S, Noh K, Blombach B, Kohlheyer D, Frunzke J. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PLoS One, 2014, 9(1): e85731
https://doi.org/10.1371/journal.pone.0085731
64 Bogner M, Ludewig U. Visualization of arginine influx into plant cells using a specific FRET-sensor. Journal of Fluorescence, 2007, 17(4): 350–360
https://doi.org/10.1007/s10895-007-0192-2
65 Mohsin M, Ahmad A. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells. Biosensors & Bioelectronics, 2014, 59: 358–364
https://doi.org/10.1016/j.bios.2014.03.066
66 Mohsin M, Abdin M Z, Nischal L, Kardam H, Ahmad A. Genetically encoded FRET-based nanosensor for in vivo measurement of leucine. Biosensors & Bioelectronics, 2013, 50: 72–77
https://doi.org/10.1016/j.bios.2013.06.028
67 Wang J M, Gao D F, Yu X L, Li W, Qi Q S. Evolution of a chimeric aspartate kinase for L-lysine production using a synthetic RNA device. Applied Microbiology and Biotechnology, 2015, 99(20): 8527–8536
https://doi.org/10.1007/s00253-015-6615-0
68 Liu Y N, Li Q G, Zheng P, Zhang Z D, Liu Y F, Sun C M, Cao G Q, Zhou W J, Wang X W, Zhang D W, . Developing a high-throughput screening method for threonine overproduction based on an artificial promoter. Microbial Cell Factories, 2015, 14(1): 1
https://doi.org/10.1186/s12934-015-0311-8
69 Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette M G, Alon U. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nature Methods, 2006, 3(8): 623–628
https://doi.org/10.1038/nmeth895
70 Mahr R, von Boeselager R F, Wiechert J, Frunzke J. Screening of an Escherichia coli promoter library for a phenylalanine biosensor. Applied Microbiology and Biotechnology, 2016, 100(15):6739–6753
71 Dietrich J A, Shis D L, Alikhani A, Keasling J D. Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synthetic Biology, 2013, 2(1): 47–58
https://doi.org/10.1021/sb300091d
72 Szmidt-Middleton H L, Ouellet M, Adams P D, Keasling J D, Mukhopadhyay A. Utilizing a highly responsive gene, yhjX, in E. coli based production of 1,4-butanediol. Chemical Engineering Science, 2013, 103: 68–73
https://doi.org/10.1016/j.ces.2013.06.044
73 Uchiyama T, Miyazaki K. Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes. Applied and Environmental Microbiology, 2010, 76(21): 7029–7035
https://doi.org/10.1128/AEM.00464-10
74 van Sint Fiet S, van Beilen J B, Witholt B. Selection of biocatalysts for chemical synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(6): 1693–1698
https://doi.org/10.1073/pnas.0504733102
75 Raman S, Rogers J K, Taylor N D, Church G M. Evolution-guided optimization of biosynthetic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50): 17803–17808
https://doi.org/10.1073/pnas.1409523111
76 Chen W, Zhang S, Jiang P X, Yao J, He Y Z, Chen L C, Gui X W, Dong Z Y, Tang S Y. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis. Metabolic Engineering, 2015, 30: 149–155
https://doi.org/10.1016/j.ymben.2015.05.004
77 Mukherjee K, Bhattacharyya S, Peralta-Yahya P. GPCR-based chemical biosensors for medium-chain fatty acids. ACS Synthetic Biology, 2015, 4(12): 1261–1269
https://doi.org/10.1021/sb500365m
78 Tang S Y, Cirino P C. Design and application of a mevalonate-responsive regulatory protein. Angewandte Chemie International Edition, 2011, 50(5): 1084–1086
https://doi.org/10.1002/anie.201006083
79 Tang S Y, Qian S, Akinterinwa O, Frei C S, Gredell J A, Cirino P C. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. Journal of the American Chemical Society, 2013, 135(27): 10099–10103
https://doi.org/10.1021/ja402654z
80 Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2011, 62(8): 2465–2483
https://doi.org/10.1093/jxb/erq442
81 Siedler S, Stahlhut S G, Malla S, Maury J, Neves A R. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metabolic Engineering, 2014, 21: 2–8
https://doi.org/10.1016/j.ymben.2013.10.011
82 Marin A M, Souza E M, Pedrosa F O, Souza L M, Sassaki G L, Baura V A, Yates M G, Wassem R, Monteiro R A. Naringenin degradation by the endophytic diazotroph Herbaspirillum seropedicae SmR1. Microbiology, 2013, 159(1): 167–175
https://doi.org/10.1099/mic.0.061135-0
83 Teran W, Felipe A, Segura A, Rojas A, Ramos J L, Gallegos M T. Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR. Antimicrobial Agents and Chemotherapy, 2003, 47(10): 3067–3072
https://doi.org/10.1128/AAC.47.10.3067-3072.2003
84 Jenison R D, Gill S C, Pardi A, Polisky B. High-resolution molecular discrimination by RNA. Science, 1994, 263(5152): 1425–1429
https://doi.org/10.1126/science.7510417
85 Thompson K M, Syrett H A, Knudsen S M, Ellington A D. Group I aptazymes as genetic regulatory switches. BMC Biotechnology, 2002, 2(1): 1
https://doi.org/10.1186/1472-6750-2-21
86 Chou H H, Keasling J D. Programming adaptive control to evolve increased metabolite production. Nature Communications, 2013, 4: 8
https://doi.org/10.1038/ncomms3595
87 Park Y H, Koo H M, Moon J O, Kim S J, Kim H J, Lee J K. L-Lysine-inducible promoter. US 07851198, <Date>Dec 14 2010</Date>, 2010
88 Wang Y, Li Q, Zheng P, Guo Y, Wang L, Zhang T, Sun J, Ma Y. Evolving the L-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method. Journal of Industrial Microbiology & Biotechnology, 2016, 43(9): 1227–1235
https://doi.org/10.1007/s10295-016-1803-1
89 Kim Y S, Gu M B. Advances in aptamer screening and small molecule aptasensors. Biosensors Based on Aptamers and Enzymes, 2014, 140: 29–67
https://doi.org/10.1007/10_2013_225
90 Ruscito A, DeRosa M C. Small-molecule binding aptamers: Selection strategies, characterization, and applications. Frontiers in Chemistry, 2016, 4: 14
91 McKeague M, Derosa M C. Challenges and opportunities for small molecule aptamer development. Journal of Nucleic Acids, 2012, 2012: 748913
[1] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 139-142.
[2] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 107-116.
[3] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 133-138.
[4] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 89-99.
[5] .  [J]. Front. Chem. Sci. Eng., 2016, 10(4): 542-551.
[6] .  [J]. Front. Chem. Sci. Eng., 2016, 10(4): 480-489.
[7] .  [J]. Front. Chem. Sci. Eng., 2016, 10(4): 441-458.
[8] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 396-404.
[9] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 432-439.
[10] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 425-431.
[11] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 417-424.
[12] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
[13] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 348-359.
[14] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 301-347.
[15] .  [J]. Front. Chem. Sci. Eng., 2016, 10(1): 16-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed