Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process
Sophie L. Pirard(), Sigrid Douven, Jean-Paul Pirard
Laboratory of Chemical Engineering, Department of Chemical Engineering, University of Liege, B-4000 Liege, Belgium
This article reports the different steps of the design, development and validation of a process for continuous production of carbon nanotubes (CNTs) via catalytic chemical vapor deposition from the laboratory scale to the industrial production. This process is based on a continuous inclined mobile-bed rotating reactor and very active catalysts using methane or ethylene as carbon source. The importance of modeling taking into account the hydrodynamic, physicochemical and physical phenomena that occur during CNT production in the process analysis is emphasized. The impact of this invention on the environment and human health is taken into consideration too.
. [J]. Frontiers of Chemical Science and Engineering, 2017, 11(2): 280-289.
Sophie L. Pirard, Sigrid Douven, Jean-Paul Pirard. Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process. Front. Chem. Sci. Eng., 2017, 11(2): 280-289.
Gommes C, Noville F, Bossuot C, Pirard J P. Qualitative assessement of the purity of multi-walled carbon nanotube samples using krypton adsorption. Studies in Surface Science and Catalysis, 2007, 160: 265–271 https://doi.org/10.1016/S0167-2991(07)80035-8
57
Zilli D, Bonelli P R, Gommes C J, Blacher S, Pirard J P, Cukierman A L. Krypton adsorption as a suitable tool for surface characterization of multiwalled CNTs. Carbon, 2011, 49(3): 980–985 https://doi.org/10.1016/j.carbon.2010.09.065
58
Pierard N, Fonseca A, Colomer J F, Bossuot C, Benoît J M, Van Tenderloo G, Pirard J P, Nagy J B. Ball milling effect on the structure of single-wall carbon nanotubes. Carbon, 2004, 42(8-9): 1691–1697 https://doi.org/10.1016/j.carbon.2004.02.031
59
Hwang J Y, Nish A, Doig J, Douven S, Chen C W, Chen L C, Nicholas R J. Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes. Journal of the American Chemical Society, 2008, 130(11): 3543–3553 https://doi.org/10.1021/ja0777640
60
Haghgoo M, Yousefi A A, Zohouriaan Mehr M J, Léonard A F, Philippe M P, Compère P, Léonard A, Job N. Correlation between morphology and electrical conductivity of dried and carbonized multi-walled carbon nanotube/resorcinol-formaldehyde xerogel composites. Journal of Materials Science, 2015, 50(18): 6007–6020 https://doi.org/10.1007/s10853-015-9148-0
61
Aqil A, Vlad A, Piedboeuf M L, Aqil M, Job N, Melinte S, Detrembleur C, Jérôme C. A new design of organic radical batteries (ORBs): Carbon nanotube buckypaper electrode functionalized by electrografting. Chemical Communications, 2015, 51(45): 9301–9304 https://doi.org/10.1039/C5CC02420J
Monthioux M, Serp P, Flahaut E, Razafinimanana M, Laurent C, Peigney A, Bacsa W, Broto J M. Introduction to carbon nanotubes. In: Bhushan B, ed. Nanotechnology Handbook. 3rd edition, revised. Berlin: Springer-Verlag Heidelberg, 2010, 47–118
4
Monthioux M. Introduction to carbon nanotubes (Ch1). In: Monthioux M, . Meta-Nanotubes: Synthesis, Properties, and Applications. London: Wiley-Blackwell, 2012, 8–39
5
Monthioux M, Flahaut E, Laurent C, Escoffier W, Raquet B, Bacsa W, Puech P, Machado B, Serp P. Properties of carbon nanotubes. In: Bhushan B, Luo D, Schricker S R, Sigmund W, Zauscher S, eds. Handbook of Nanomaterials Properties. Berlin: Springer-Verlag Heidelberg, 2014, 1–49
6
Zhang Q, Huang J Q, Zhao M Q, Qian W Z, Wei F. Carbon nanotube mass production: Principles and processes. ChemSusChem, 2011, 4(7): 864–889 https://doi.org/10.1002/cssc.201100177
7
Zhang Q, Huang J Q, Qian W Z, Zhang Y Y, Wei F. The road for nanomaterials industry: A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small, 2013, 9(8): 1237–1265 https://doi.org/10.1002/smll.201203252
8
Huang J Q, Zhang Q, Zhao M Q, Wei F. A review of the large-scale production of carbon nanotubes: The practice of nanoscale process engineering. Chinese Chemical Bulletin, 2012, 57(2-3): 157–166 https://doi.org/10.1007/s11434-011-4879-z
Berber S, Kwon Y K, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Physical Letter Reviews, 2000, 84(20): 4613–4616 https://doi.org/10.1103/PhysRevLett.84.4613
11
Kukovecz A, Kónya Z, Nagaraju N, Willems I, Tamási A, Fonseca A, Nagy J B, Kiricsi I. Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol-gel silica-aluminas. Physical Chemistry Chemical Physics, 2000, 2(13): 3071–3076 https://doi.org/10.1039/b002331k
12
Willems I, Kónya Z, Colomer J F, Van Tendeloo G, Nagaraju N, Fonseca A, Nagy J B. Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chemical Physics Letters, 2000, 317(1-2): 71–76 https://doi.org/10.1016/S0009-2614(99)01300-7
13
Willems I, Kónya Z, Fonseca A, Nagy J B. Heterogeneous catalytic production and mechanical resistance of nanotubes prepared on magnesium oxide-supported Co-based catalysts. Applied Catalysis A, 2002, 229: 229–233 https://doi.org/10.1016/S0926-860X(02)00030-3
14
Piedigrosso P, Kónya Z, Colomer J F, Fonseca A, van Tendeloo G, Nagy J B. Production of differently shaped multi-wall carbon nanotubes using various cobalt supported catalysts. Physical Chemistry Chemical Physics, 2000, 2(1): 163–170. https://doi.org/10.1039/a905622j
15
Pierard N, Fonseca A, Konya Z, Nagaraju N, Willems I, Tollis S, Bister G, Nagy J B, Popa P. Method for the production of functionalized short carbon nanotubes and functionalized short carbon nanotubes obtainable by said method. WO Patent, 2002/020402
16
Nagy J B, Nagaraju N, Willems I, Fonseca A. Catalyst supports and carbon nanotubes produced thereon. WO Patent, 2003/004410
17
Kathyayini H, Willems I, Fonseca A, Nagy J B, Nagaraju N. Catalytic materials based on aluminium hydroxide, for the large scale production of bundles of multi-walled (MWNT) carbon nanotubes. Catalysis Communications, 2006, 7(3): 140–147 https://doi.org/10.1016/j.catcom.2005.05.010
18
Pirard J P, Bossuot C, Kreit P. Method and installation for the manufacture of carbon nanotubes. WO Patent, 2004/069742
19
Pirard J P. Made in Belgium. Chemical and Engineering News, 2008, 86(12): 5
20
Bossuot C. Development of a reactor for the manufacture of carbon nanotubes by CCVD process. Dissertation for the Doctoral Degree. Belgium: University of Liege, 2004 (in French)
21
Pirard S L, Douven S, Pirard J P. Development of a reactor for the manufacture of carbon nanotubes by CCVD process. Chimie Nouvelle, 2015, 119: 1–12 (in French)
22
See C H, Harris A T. A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Industrial & Engineering Chemistry Research, 2007, 46(4): 997–1012 https://doi.org/10.1021/ie060955b
23
MacKenzie K J, Dunens O M, Harris A T. An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds. Industrial & Engineering Chemistry Research, 2010, 49(11): 5323–5338 https://doi.org/10.1021/ie9019787
24
Couteau E, Hernádi K, Seo J W, Thiên-Nga L, Mikό C, Gaál R, Forrό L. CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chemical Physics Letters, 2003, 378(1-2): 9–17 doi:10.1016/S0009-2614(03)01218-1
25
Seo J W, Couteau E, Umek P, Hernádi K, Marcoux P, Lukić B, Mik Có, Milas M, Gaál R, Forr Ló. Synthesis and manipulation of carbon nanotubes. New Journal of Physics, 2003, 5(120):1‒22
26
Magrez A, Seo J W, Mikó C, Hernádi, K, Forró, L. Growth of carbon nanotubes with alkaline earth carbonate as support. Journal of Physical Chemistry B, 2005, 109: 10087–10091
27
Magrez A, Seo J W, Kuznetsov V L, Forró L. Evidence of an equimolar C2H2-CO2 reaction in the synthesis of carbon nanotubes. Angewandte Chemie International Edition, 2007, 46(3): 441–444 https://doi.org/10.1002/anie.200603764
28
Rakov E G, Blinov S N, Ivanov I G, Rakova E V, Digurov N G. Continuous process for obtaining carbon nanofibers. Russian Journal of Applied Chemistry, 2004, 77(2): 187–191 https://doi.org/10.1023/B:RJAC.0000030347.08283.de
29
Rakov E G. The current status of carbon nanotube and carbon nanofiber production. Nanotechnologies in Russia, 2008, 3(9-10): 575–580 https://doi.org/10.1134/S1995078008090061
30
Zavarukhin S G, Kuvshinov G G. Mathematical modeling of continuous production of carbon nanofibers from methane in a reactor with a moving bed of a nickel-containing catalyst. Theoretical Foundations of Chemical Engineering, 2006, 40(5): 519–525 https://doi.org/10.1134/S0040579506050095
31
Zavarukhin S G, Kuvshinov G G. Mathematical modeling of the continuous process for synthesis of nanofibrous carbon in a moving catalyst bed reactor with recirculating gas flow. Chemical Engineering Journal, 2008, 137(3): 681–685 https://doi.org/10.1016/j.cej.2007.06.036
32
Pirard S L, Pirard J P, Bossuot C. Modeling of a continuous rotary reactor for carbon nanotube synthesis by catalytic chemical vapor deposition. AIChE Journal. American Institute of Chemical Engineers, 2009, 55(3): 675–686 https://doi.org/10.1002/aic.11755
33
Douven S, Pirard S L, Chan F Y, Pirard R, Heyen G, Pirard J P. Large scale synthesis of multi-walled carbon nanotubes in a continuous inclined rotating reactor by the catalytic chemical vapour deposition process using methane as carbon source. Chemical Engineering Journal, 2012, 188: 113–125 https://doi.org/10.1016/j.cej.2012.01.110
34
Edwin E, Brustad M, Aaser K I, Rytter E, Mikkelsen O, Johansen J A. Carbon nano-fibre production. US Patent, 2010/0068123
35
Mohamed A R, Chai S P, Yeoh W M. An apparatus for production of carbon nanotubes. WO Patent, 2012/121584
36
Yeoh W M, Lee K T, Mohamed A R, Chai S P. Production of carbon nanotubes from chemical vapor deposition of methane in a continuous rotary reactor system. Chemical Engineering Communications, 2012, 199(5): 600–607 https://doi.org/10.1080/00986445.2011.604812
37
Pinilla J L, Utrilla R, Lázaro M J, Suelves I, Moliner R, Palacios J M. A novel rotary reactor configuration for simultaneous production of hydrogen and carbon nanofibers. International Journal of Hydrogen Energy, 2009, 34(19): 8016–8022 https://doi.org/10.1016/j.ijhydene.2009.07.057
38
Pinilla J L, Utrilla R, Lázaro M J, Moliner R, Suelves I, García A B. Ni- and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor. Fuel Processing Technology, 2011, 92(8): 1480–1488 https://doi.org/10.1016/j.fuproc.2011.03.009
39
Chesnokov V V, Chichkan A S. Production of hydrogen by methane catalytic decomposition over Ni-Cu-Fe/Al2O3 catalyst. International Journal of Hydrogen Energy, 2009, 34(7): 2979–2985 https://doi.org/10.1016/j.ijhydene.2009.01.074
40
Torres D, Pinilla J L, Lázaro M J, Moliner R, Suelves I. Hydrogen and multiwall carbon nanotubes production by catalytic decomposition of methane: Thermogravimetric analysis and scaling-up of Fe-Mo catalysts. International Journal of Hydrogen Energy, 2014, 39(8): 3698–3709 https://doi.org/10.1016/j.ijhydene.2013.12.127
41
Bayer A G. Bayer offloads its carbon nanotubes and graphene patents to future carbon. Additives for Polymers, 2014, 5: 7
42
Villermaux J. Reaction Chemical Engineering. 2nd ed. Paris: Lavoisier, 1993 (in French)
43
Pirard S L, Douven S, Bossuot C, Heyen G, Pirard J P. A kinetic study of multi-walled carbon nanotube synthesis by catalytic chemical vapor deposition using a Fe-Co/Al2O3 catalyst. Carbon, 2007, 45(6): 1167–1175 https://doi.org/10.1016/j.carbon.2007.02.021
44
Pirard S L, Heyen G, Pirard J P. Quantitative study of catalytic activity and deactivation of Fe-Co/Al2O3 catalysts for multi-walled carbon nanotube synthesis by the CCVD process. Applied Catalysis A, 2010, 382(1): 1–9 https://doi.org/10.1016/j.apcata.2010.03.064
45
Douven S, Pirard S L, Heyen G, Toye D, Pirard J P. Kinetic study of double-walled carbon nanotube synthesis by catalytic chemical vapour deposition over an Fe-Mo/MgO catalyst using methane as the carbon source. Chemical Engineering Journal, 2011, 175: 396–407 https://doi.org/10.1016/j.cej.2011.08.066
Silvy R P, Liégeois F, Culot B, Lambert S. Preparation process of a supported catalyst for producing carbon nanotubes. WO Patent, 2006/079186
48
Pirard S L, Delafosse A, Toye D, Pirard J P. Modeling of a continuous rotary reactor for carbon nanotubes synthesis by catalytic chemical vapor deposition: Influence of heat exchanges and temperature profiles. Chemical Engineering Journal, 2013, 232: 488–494 https://doi.org/10.1016/j.cej.2013.07.077
49
Gommes C, Blacher S, Bossuot C, Marchot P, Nagy J B, Pirard J P. Influence of operating conditions on the production rate of multi-walled carbon nanotubes in a CVD reactor. Carbon, 2004, 42: 1473–1482 https://doi.org/10.1016/j.carbon.2004.01.063
50
Pirard S L, Lumay G, Vandewalle N, Pirard J P. Motion of carbon nanotubes in a rotating drum: Dynamic angle of repose and bed behavior diagram. Chemical Engineering Journal, 2009, 146(1): 143–147 https://doi.org/10.1016/j.cej.2008.09.015
51
Douven S. Industrial process for the manufacture of carbon nanotubes. Dissertation for the Doctoral Degree. Belgium: University of Liege, 2010 (in French)
52
Tran K Y, Heinrichs B, Pirard J P, Lambert S. Carbon nanotubes synthesis by ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co and Fe-Co/Al2O3 sol-gel catalysts. Applied Catalysis A, 2007, 318: 63–69 https://doi.org/10.1016/j.apcata.2006.10.042
53
Zilli D, Blacher S, Cukierman A L, Pirard J P, Gommes C J. Formation mechanism of Y-junctions in arrays of multi-walled carbon nanotubes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 327(1-3): 140–143 https://doi.org/10.1016/j.colsurfa.2008.05.042
54
Gommes C, Blacher S, Masenelli-Varlot K, Bossuot C, Mc Rae E, Nagy J B, Fonseca A, Pirard J P. Image analysis characterization of multi-walled carbon nanotubes. Carbon, 2003, 41(13): 2561–2572 https://doi.org/10.1016/S0008-6223(03)00375-0
55
Gommes C, Blacher S, Dupont-Pavlovsky N, Bossuot C, Lamy M, Brasseur A, Marguilier D, Fonseca A, Nagy J B, Pirard J P. Comparison of different methods for characterizing multi-walled carbon nanotubes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2004, 241: 155–164 https://doi.org/10.1016/j.colsurfa.2004.04.050