Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials
Muhammad I. Asghar(), Sakari Lepikko, Janne Patakangas, Janne Halme, Peter D. Lund
New Energy Technologies Group, Department of Applied Physics, Aalto University, P.O. BOX 15100, FI-00076 Aalto, Finland
A comparative analysis of perovskite structured cathode materials, La0.65Sr0.35MnO3 (LSM), La0.8Sr0.2CoO3 (LSC), La0.6Sr0.4FeO3 (LSF) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), was performed for a ceramic-carbonate nanocomposite fuel cell using composite electrolyte consisting of Gd0.1Ce0.9O1.95 (GDC) and a eutectic mixture of Na2CO3 and Li2CO3. The compatibility of these nanocomposite electrode powder materials was investigated under air, CO2 and air/CO2 atmospheres at 550 °C. Microscopy measurements together with energy dispersive X-ray spectroscopy (EDS) elementary analysis revealed few spots with higher counts of manganese relative to lanthanum and strontium under pure CO2 atmosphere. Furthermore, electrochemical impedance (EIS) analysis showed that LSC had the lowest resistance to oxygen reduction reaction (ORR) (14.12 Ω·cm2) followed by LSF (15.23 Ω·cm2), LSCF (19.38 Ω·cm2) and LSM (>300 Ω·cm2). In addition, low frequency EIS measurements (down to 50 µHz) revealed two additional semi-circles at frequencies around 1 Hz. These semicircles can yield additional information about electrochemical reactions in the device. Finally, a fuel cell was fabricated using GDC/NLC nanocomposite electrolyte and its composite with NiO and LSCF as anode and cathode, respectively. The cell produced an excellent power density of 1.06 W/cm2 at 550 °C under fuel cell conditions.
. [J]. Frontiers of Chemical Science and Engineering, 2018, 12(1): 162-173.
Muhammad I. Asghar, Sakari Lepikko, Janne Patakangas, Janne Halme, Peter D. Lund. Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials. Front. Chem. Sci. Eng., 2018, 12(1): 162-173.
Rajesh S, Maccedo D A, Nascimento R M. Materials and processes for energy: Communicating current research and technological developments. Formatex Research Center, 2013, 485–494
2
Park S Y, Ahn J H, Jeong C W, Na C W, Song R H, Lee J H. Ni-YSZ-supported tubular solid oxide fuel cells with GDC interlayer between YSZ electrolyte and LSCF cathode. International Journal of Hydrogen Energy, 2014, 39(24): 12894–12903 https://doi.org/10.1016/j.ijhydene.2014.06.103
3
Kakac S, Pramuanjaroenkij A, Zhou X Y. A review of numerical modelling of solid oxide fuel cells. International Journal of Hydrogen Energy, 2007, 32(7): 761–786 https://doi.org/10.1016/j.ijhydene.2006.11.028
4
Ho T X, Kosinski P, Hoffmann A C, Vik A. Effects of heat sources on the performance of a planar solid oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35(9): 4276–4284 https://doi.org/10.1016/j.ijhydene.2010.02.016
Yokokawa H, Tu H, Iwanschitz B, Mai A. Fundamental mechanisms limiting solid oxide fuel cell durability. Journal of Power Sources, 2008, 182(2): 400–412 https://doi.org/10.1016/j.jpowsour.2008.02.016
7
O’Hayre R, Cha S W, Colella W, Prinz F B. Fuel cell fundamentals.New Jersey: Wiley, 2006, 245–246
8
Patakangas J, Ma Y, Jing Y, Lund P. Review and analysis of characterization methods and ionic conductivities for low-temperature fuel cells (LT-SOFC). Journal of Power Sources, 2014, 263: 315–331 https://doi.org/10.1016/j.jpowsour.2014.04.008
Ivers-Tiffee E, Weber A, Herbstritt D. Materials and technologies for SOFC-components. Journal of the European Ceramic Society, 2001, 21(10-11): 1805–1811 https://doi.org/10.1016/S0955-2219(01)00120-0
Fergus J, Hui R, Li X, Wilkinson D P, Zhang J. Solid Oxide Fuel Cells: Material Properties and Performance. Florida: Chemical Rubber Company Press, 2009, 33–37
13
Lee J G, Park J H, Shul Y G. Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W∙cm‒2 at 550 °C. Nature Communications, 2014, 5: 4045
14
Pereira J R S, Rajesh S, Figueiredo F M L, Marques F M B. Composite electrodes for ceria-carbonate intermediate temperature electrolytes. Electrochimica Acta, 2013, 90: 71–79 https://doi.org/10.1016/j.electacta.2012.12.035
15
Rajesh S, Pereira J R S, Figueiredo F M L, Marques F M B. Performance of carbonate—LaCoO3 and La0.8Sr0.2Co0.2Fe0.8O3-composite cathodes under carbon dioxide. Electrochimica Acta, 2014, 125: 435–442 https://doi.org/10.1016/j.electacta.2014.01.157
16
Loureiro F J A, Rajesh S, Figueiredo F M L, Marques F M B. Stability of metal oxides against Li/Na carbonates in composite electrolytes. Royal Society of Chemistry Advances, 2014, 4: 59943–59952
17
Chockalingam R, Jain S, Basu S. Studies on conductivity of composite GdCeO2-carbonate electrolytes for low temperature solid oxide fuel cells. Integrated Ferroelectrics, 2010, 116(1): 23–34 https://doi.org/10.1080/10584587.2010.503517
18
Tan W, Fan L, Raza R, Khan M A, Zhu B. Studies of modified lithiated NiO cathode for low temperature solid oxide fuel cell with ceria-carbonate composite electrolyte. International Journal of Hydrogen Energy, 2013, 38(1): 370–376 https://doi.org/10.1016/j.ijhydene.2012.09.160
19
Di J, Chen M, Wang C, Zheng J, Fan L, Zhu B. Samarium doped ceria-(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell. Journal of Power Sources, 2010, 195(15): 4695–4699 https://doi.org/10.1016/j.jpowsour.2010.02.066
20
Richter J, Holtappelsm P, Graule T, Nakamura T, Gauckler L J. Materials design for perovskite SOFC cathodes. Monatshefte für Chemie, 2009, 140(9): 985–999 https://doi.org/10.1007/s00706-009-0153-3
21
Ota K, Mitsushima S, Kato S, Asano S, Yoshitake H, Kamiya N. Solubilities of nickel oxide in molten carbonate. Journal of the Electrochemical Society, 1992, 139(3): 667–671 https://doi.org/10.1149/1.2069282
22
Doyon J, Gilbert T, Davies G, Paetsch L. NiO solubility in mixed alkali/alkaline earth carbonates. Journal of the Electrochemical Society, 1987, 134(12): 3035–3038 https://doi.org/10.1149/1.2100335
23
Jiang S P. A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes. Solid State Ionics, 2002, 146(1-2): 1–22 https://doi.org/10.1016/S0167-2738(01)00997-3
24
Petric A, Huang P, Tietz F. Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics, 2002, 135(1-4): 719–725 https://doi.org/10.1016/S0167-2738(00)00394-5
Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N. Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics, 1991, 48(3-4): 207–212 https://doi.org/10.1016/0167-2738(91)90034-9
27
Wiemhofer H D, Bremes H G, Nigge U, Zipprich W. Solid state ionics. Studies of ionic transport and oxygen exchange on oxide materials for electrochemical gas sensors. Solid State Ionics, 2002, 150(1-2): 63–77 https://doi.org/10.1016/S0167-2738(02)00264-3
28
Seo E S M, Yoshito W K, Ussui V, Lazar D R R, Castanho S R H M, Paschoal J O A. Influence of the starting materials on performance of high temperature oxide fuel cells devices. Materials Research, 2004, 7(1): 215–220 https://doi.org/10.1590/S1516-14392004000100029
29
Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 2004, 104(10): 4791–4843 https://doi.org/10.1021/cr020724o
30
Fu Y, Poizeau S, Bertei A, Qi C, Mohanram A, Pietras J D, Bazant M Z. Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells. Electrochimica Acta, 2015, 159: 71–80 https://doi.org/10.1016/j.electacta.2015.01.120
31
Maguire E, Gharbage B, Margues F M B, Labrincha J A. Cathode materials for intermediate temperature SOFCs. Solid State Ionics, 2000, 127(3-4): 329–335 https://doi.org/10.1016/S0167-2738(99)00286-6
32
Evans A, Martynczuk J, Stender D, Schneider C W, Lippert T, Prestat M. Low-temperature micro-solid oxide fuel cells with partially amorphous La0.6Sr0.4CoO3-s cathodes. Advanced Energy Materials, 2015, 5(1): 1400747 https://doi.org/10.1002/aenm.201400747
33
Evans A, Karalic S, Martynczuk J, Prestat M, Tolke R, Yang Z, Gauckler L J. La0.6Sr0.4CoO3-s thin films prepared by pulsed laser deposition as cathodes for micro-solid oxide fuel cells. ECS Transactions, 2012, 45(1): 333–336 https://doi.org/10.1149/1.3701323
34
Gao Z, Mogni L V, Miller E C, Railsback J G, Barnett S A. A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science, 2016, 9(5): 1602–1644 https://doi.org/10.1039/C5EE03858H
Nguyen H V P, Kang M G, Ham H C, Choi S H, Han J, Nam S W, Hong S A, Yoon S P. A new cathode for reduced-temperature molten carbonate fuel cells. Journal of the Electrochemical Society, 2014, 161(14): F1458–F1467 https://doi.org/10.1149/2.0741414jes