Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2018, Vol. 12 Issue (1): 194-208   https://doi.org/10.1007/s11705-017-1647-x
  本期目录
New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate
Mohit Nahata, Chang Y. Seo, Pradeep Krishnakumar, Johannes Schwank()
Department of Chemical Engineering, University of Michigan-Ann Arbor, Ann Arbor, MI 48109, USA
 全文: PDF(670 KB)   HTML
Abstract

A significant portion of the world’s population does not have access to safe drinking water. This problem is most acute in remote, resource-constrained rural settings in developing countries. Water filtration using activated carbon is one of the important steps in treating contaminated water. Lignocellulosic biomass is generally available in abundance in such locations, such as the African rain forests. Our work is focused on developing a simple method to synthesize activated biochar from locally available materials. The preparation of activated biochar with diammonium hydrogenphosphate (DAP) as the activating agent is explored under N2 flow and air. The study, carried out with cellulose as a model biomass, provides some insight into the interaction between DAP and biomass, as well as the char forming mechanism. Various characterization techniques such as N2 physisorption, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy are utilized to compare the properties between biochar formed under nitrogen and partial oxidative conditions. At a temperature of 450 °C, the loading of DAP over cellulose is systematically varied, and its effect on activation is examined. The activated biochar samples are predominantly microporous in the range of concentrations studied. The interaction of DAP with cellulose is investigated and the nature of bonding of the heteroatoms to the carbonaceous matrix is elucidated. The results indicate that the quality of biochar prepared under partial oxidation condition is comparable to that of biochar prepared under nitrogen, leading to the possibility of an activated biochar production scheme on a small scale in resource-constrained settings.

Key wordscellulose    DAP    activation    heteroatom    microporous
收稿日期: 2016-10-07      出版日期: 2018-02-26
Corresponding Author(s): Johannes Schwank   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2018, 12(1): 194-208.
Mohit Nahata, Chang Y. Seo, Pradeep Krishnakumar, Johannes Schwank. New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate. Front. Chem. Sci. Eng., 2018, 12(1): 194-208.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-017-1647-x
https://academic.hep.com.cn/fcse/CN/Y2018/V12/I1/194
PrecursorMass of cellulose /mgConcentration of DAP solution /(mg·mL1)Volume of DAP solution /mLDAP loading /(g DAP per 100 g cellulose)DAP content /(wt-%)
MCC-11-DAP a)10001011.111.110
MCC-50-DAP100050105033.33
MCC-75-DAP10001007.57542.85
MCC-100-DAP10001001010050
Tab.1  
Fig.1  
Fig.2  
Fig.3  
MCC (Literature) ν/cm1MCC (sample used in this work) ν/cm1Band assignment
898899νas (ring)(out of phase) or δCH (wag)
11581135νas C?O?C (bridge)
14291433δsCH2
16341645δOH (adsorbed water)
29002906νCH
Tab.2  
Fig.4  
Fig.5  
Fig.6  
Biochar sampleBET S.A. /(m2·g1)Micropore volume /(cm3·g1)Median micropore size/nmMesopore size /nmMesopore volume /(cm3·g1)
AC-50-POX6750.3160.564N/A0.024
AC-75-POX7830.3710.600N/A0.019
AC-100-POX7880.3580.6223.50.094
Tab.3  
Biochar sampleC /(wt-%)O /(wt-%)N /(wt-%)P /(wt-%)
AC-50-N280.1410.774.344.75
AC-50-POX78.3112.227.382.08
AC-75-POX80.459.338.671.55
AC-100-POX74.2611.5311.093.12
Tab.4  
RegionPeakAC-50-N2 /eVAC-50-POX /eVAC-75-POX /eVAC-100-POX /eVAssignment
C 1sA284.35284.40284.42284.35Graphite
B285.19285.51285.20285.15ROH , C?O?C, C?O?P
C286.84286.78286.48286.38RCOR?, ?CN
D288.83288.36288.59288.38RCOOH, RCOOR?
E?290.12?290.43ππ*
O 1sA530.73530.88530.78530.67=O in carbonyl, carboxyl and phosphates
B532.47532.71532.48532.36?O?
C535.95536.17536.00535.69Chemisorbed O
N 1sA398.27398.25398.28398.23Pyridinic-N
B400.21400.22400.29400.05Pyrrole, Pyridones, ?CN
C?404.11403.46403.40?N?Oa)
P 2pA?130.20129.44?Elemental P
B132.88132.91133.26133.11Phosphates and pyrophosphates
C?133.93?134.11Metaphosphates
D135.86136.19135.55135.53P2O5
Tab.5  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
1 Collard F X, Blin J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable & Sustainable Energy Reviews, 2014, 38: 594–608
https://doi.org/10.1016/j.rser.2014.06.013
2 Antal M J, Grønli M. The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research, 2003, 42(8): 1619–1640
https://doi.org/10.1021/ie0207919
3 Downie A E, Van Zwieten L, Smernik R J, Morris S, Munroe P R. Terra Preta Australis: Reassessing the carbon storage capacity of temperate soils. Agriculture, Ecosystems & Environment, 2011, 140(1): 137–147
https://doi.org/10.1016/j.agee.2010.11.020
4 Huggins T M, Haeger A, Biffinger J C, Ren Z J. Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Research, 2016, 94: 225–232
https://doi.org/10.1016/j.watres.2016.02.059
5 Rodríguez-Reinoso F, Molina-Sabio M, González M T. The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon, 1995, 33(1): 15–23
https://doi.org/10.1016/0008-6223(94)00100-E
6 Caturla F, Molina-Sabio M, Rodríguez-Reinoso F. Preparation of activated carbon by chemical activation with ZnCl2. Carbon, 1991, 29(7): 999–1007
https://doi.org/10.1016/0008-6223(91)90179-M
7 Molina-Sabio M, Almansa C, Rodríguez-Reinoso F. Phosphoric acid activated carbon discs for methane adsorption. Carbon, 2003, 41(11): 2113–2119
https://doi.org/10.1016/S0008-6223(03)00237-9
8 Yoon S H, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I. KOH activation of carbon nanofibers. Carbon, 2004, 42(8): 1723–1729
https://doi.org/10.1016/j.carbon.2004.03.006
9 Jagtoyen M, Derbyshire F. Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon, 1998, 36(7): 1085–1097
https://doi.org/10.1016/S0008-6223(98)00082-7
10 Molina-Sabio M, Rodríguez-Reinoso F, Caturla F, Sellés M J. Porosity in granular carbons activated with phosphoric acid. Carbon, 1995, 33(8): 1105–1113
https://doi.org/10.1016/0008-6223(95)00059-M
11 Fitzer E, Geigl K H, Hüttner W, Weiss R. Chemical interactions between the carbon fibre surface and epoxy resins. Carbon, 1980, 18(6): 389–393
https://doi.org/10.1016/0008-6223(80)90029-9
12 Puziy A, Poddubnaya O, Martínez-Alonso A, Suárez-García F, Tascón J M. Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties. Carbon, 2002, 40(9): 1493–1505
https://doi.org/10.1016/S0008-6223(01)00317-7
13 Hu B, Wang K, Wu L, Yu S H, Antonietti M, Titirici M M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials, 2010, 22(7): 813–828
https://doi.org/10.1002/adma.200902812
14 Hu B, Yu S H, Wang K, Liu L, Xu X W. Functional carbonaceous materials from hydrothermal carbonization of biomass: An effective chemical process. Dalton Transactions (Cambridge, England), 2008, 40(40): 5414–5423
https://doi.org/10.1039/b804644c
15 Benaddi H, Bandosz T, Jagiello J, Schwarz J, Rouzaud J, Legras D, Béguin F. Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon, 2000, 38(5): 669–674
https://doi.org/10.1016/S0008-6223(99)00134-7
16 Mohan D, Pittman Charles U, Steele P H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 2006, 20(3): 848–889
https://doi.org/10.1021/ef0502397
17 Di Blasi C, Branca C, Galgano A. Effects of diammonium phosphate on the yields and composition of products from wood pyrolysis. Industrial & Engineering Chemistry Research, 2007, 46(2): 430–438
https://doi.org/10.1021/ie0612616
18 Ilharco L M, Garcia A R, Lopes da Silva J, Vieira Ferreira L F. Infrared approach to the study of adsorption on cellulose: Influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir, 1997, 13(15): 4126–4132
https://doi.org/10.1021/la962138u
19 Bouchard J, Abatzoglou N, Chornet E, Overend R P. Characterization of depolymerized cellulosic residues. Wood Science and Technology, 1989, 23(4): 343–355
https://doi.org/10.1007/BF00353250
20 Branca C, Di B C. Oxidation characteristics of chars generated from wood impregnated with (NH4)2HPO4 and (NH4)2SO4. Thermochimica Acta, 2007, 456(2): 120–127
https://doi.org/10.1016/j.tca.2007.02.009
21 Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, 57(4): 603–619
https://doi.org/10.1351/pac198557040603
22 Molina-Sabio M, Rodríguez-Reinoso F. Role of chemical activation in  the  development  of  carbon  porosity. Colloids  and  Surfaces. A,  Physicochemical  and  Engineering Aspects,  2004,  241(1):  15–25
https://doi.org/10.1016/j.colsurfa.2004.04.007
23 Oshida K, Kogiso K, Matsubayashi K, Takeuchi K, Kobayashi S, Endo M, Dresselhaus M S, Dresselhaus G. Analysis of pore structure of activated carbon fibers using high resolution transmission electron microscopy and image processing. Journal of Materials Research, 1995, 10(10): 2507–2517
https://doi.org/10.1557/JMR.1995.2507
24 Puziy A M, Poddubnaya O I, Socha R P, Gurgul J, Wisniewski M. XPS and NMR studies of phosphoric acid activated carbons. Carbon, 2008, 46(15): 2113–2123
https://doi.org/10.1016/j.carbon.2008.09.010
25 Kannan A G, Choudhury N R, Dutta N K. Synthesis and characterization of methacrylate phospho-silicate hybrid for thin film applications. Polymer, 2007, 48(24): 7078–7086
https://doi.org/10.1016/j.polymer.2007.09.050
26 Pels J R, Kapteijn F, Moulijn J A, Zhu Q, Thomas K M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon, 1995, 33(11): 1641–1653
https://doi.org/10.1016/0008-6223(95)00154-6
27 Sethia G, Sayari A. Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture. Carbon, 2015, 93: 68–80
https://doi.org/10.1016/j.carbon.2015.05.017
28 Pelavin M, Hendrickson D N, Hollander J M, Jolly W L. Phosphorus 2p electron binding energies. Correlation with extended Hueckel charges. Journal of Physical Chemistry, 1970, 74(5): 1116–1121
https://doi.org/10.1021/j100700a027
29 Marsh H, Rodríguez-Reinoso F. Activated carbon. Elsevier, 2006, 224–225
30 Zhou Y, Candelaria S L, Liu Q, Uchaker E, Cao G. Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energy, 2015, 12: 567–577
https://doi.org/10.1016/j.nanoen.2015.01.026
31 Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon, 1995, 33(11): 1561–1565
https://doi.org/10.1016/0008-6223(95)00117-V
32 Shimodaira N, Masui A. Raman spectroscopic investigations of activated carbon materials. Journal of Applied Physics, 2002, 92(2): 902–909
https://doi.org/10.1063/1.1487434
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed