Strengthening of polysulfone membranes using hybrid mixtures of micro- and nano-scale modifiers
Peyman P. Selakjani1, Majid Peyravi1, Mohsen Jahanshahi1(), Hamzeh Hoseinpour2, Ali S. Rad3, Soodabeh Khalili1
1. Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran 2. Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran 3. Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
Polysulfone (PSf) membranes were modified by either a new organic modifier (sulfonated poly(ether sulfide sulfone), SPESS) or a traditional modifier (rice hulk). These membranes were further reinforced with either multi-walled carbon nanotubes (MWCNTs) or silica nanoparticles. Having a dye rejection of 98.46%, the reinforced membranes increased more than 50% in strength but no change in solution flux was observed. The morphological and roughness studies were conducted using scanning electron microscopy and atomic force microscopy. Moreover, the PSF membranes were also characterized by differential scanning calorimetry. Modifying the membranes with organic modifier or nanofiller increases the glass transition temperature (Tg). The highest Tg and strength were observed for the PSf-SPESS-MWCNT membrane. SPESS decreases surface roughness but MWCNT increases roughness on the nanoscale. All membranes show a bimodal pore size distribution, whereas the PSf-SPESS-MWCNT membrane exhibits a relatively uniform distribution of macroscopic and microscopic pores.
. [J]. Frontiers of Chemical Science and Engineering, 2018, 12(1): 174-183.
Peyman P. Selakjani, Majid Peyravi, Mohsen Jahanshahi, Hamzeh Hoseinpour, Ali S. Rad, Soodabeh Khalili. Strengthening of polysulfone membranes using hybrid mixtures of micro- and nano-scale modifiers. Front. Chem. Sci. Eng., 2018, 12(1): 174-183.
Ng L Y, Leo C P, Mohammad A W. Optimizing the incorporation of silica nanoparticles in polysulfone/poly(vinyl alcohol) membranes with response surface methodology. Journal of Applied Polymer Science, 2011, 121(3): 1804–1814 https://doi.org/10.1002/app.33628
2
Zhao S, Wang Z, Wang J, Yang S, Wang S. PSf/PANI nanocomposite membrane prepared by in situ blending of PSf and PANI/NMP. Journal of Membrane Science, 2011, 376(1-2): 83–95 https://doi.org/10.1016/j.memsci.2011.04.008
3
Shen C, Meng Q, Zhang G. Chemical modification of polysulfone membrane by polyethylene glycol for resisting drug adsorption and self-assembly of hepatocytes. Journal of Membrane Science, 2011, 369(1-2): 474–481 https://doi.org/10.1016/j.memsci.2010.12.016
4
Padaki M, Isloor A M, Wanichapichart P. Polysulfone/N-phthaloylchitosan novel composite membranes for salt rejection application. Desalination, 2011, 279(1-3): 409–414 https://doi.org/10.1016/j.desal.2011.06.045
5
Shi L, Wang R, Cao Y, Liang D T, Tay J H. Effect of additives on the fabrication of poly(vinylidene fluoride-co-hexafluropropylene)(PVDF-HFP) asymmetric microporous hollow fiber membranes. Journal of Membrane Science, 2008, 315(1-2): 195–204 https://doi.org/10.1016/j.memsci.2008.02.035
6
Rafiq S, Man Z, Maulud A, Muhammad N, Maitra S. Effect of varying solvents compositions on morphology and gas permeation properties on membranes blends for CO2 separation from natural gas. Journal of Membrane Science, 2011, 378(1-2): 444–452 https://doi.org/10.1016/j.memsci.2011.05.025
7
Barth C, Goncalves M, Pires A, Roeder J, Wolf B. Asymmetric polysulfone and polyethersulfone membranes: Effects of thermodynamic conditions during formation on their performance. Journal of Membrane Science, 2000, 169(2): 287–299 https://doi.org/10.1016/S0376-7388(99)00344-0
8
Ionita M, Pandele A M, Crica L, Pilan L. Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Composites. Part B, Engineering, 2014, 59: 133–139 https://doi.org/10.1016/j.compositesb.2013.11.018
9
Vilakati G D, Hoek E M, Mamba B B. Probing the mechanical and thermal properties of polysulfone membranes modified with synthetic and natural polymer additives. Polymer Testing, 2014, 34: 202–210 https://doi.org/10.1016/j.polymertesting.2014.01.014
10
Bai H, Zhou Y, Zhang L. Morphology and mechanical properties of a new nanocrystalline cellulose/polysulfone composite membrane. Advances in Polymer Technology, 2015, 34(1): 21471–21478 https://doi.org/10.1002/adv.21471
11
Peyravi M, Rahimpour A, Jahanshahi M. Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration. Journal of Membrane Science, 2012, 423: 225–237 https://doi.org/10.1016/j.memsci.2012.08.019
12
Samal S K, Dash M, Chiellini F, Wang X, Chiellini E, Declercq H A, Kaplan D L. Silk/chitosan biohybrid hydrogels and scaffolds via green technology. RSC Advances, 2014, 4(96): 53547–53556 https://doi.org/10.1039/C4RA10070K
13
Yu K, Liu Y, Leng J. Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Advances, 2014, 4(6): 2961–2968 https://doi.org/10.1039/C3RA43258K
14
Misra A, Tyagi P K, Rai P, Misra D. FTIR spectroscopy of multiwalled carbon nanotubes: A simple approach to study the nitrogen doping. Journal of Nanoscience and Nanotechnology, 2007, 7(6): 1820–1823 https://doi.org/10.1166/jnn.2007.723
15
Lehman J H, Terrones M, Mansfield E, Hurst K E, Meunier V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 2011, 49(8): 2581–2602 https://doi.org/10.1016/j.carbon.2011.03.028
16
Pouresmaeel-Selkjani P, Jahanshahi M, Peyravi M. Mechanical, thermal, and morphological properties of nanoporous reinforced polysulfone membranes. High Performance Polymers, 2017, 29(7): 759–771 doi:10.1177/0954008316656742
17
Mohammadi-rovshandeh J, Pouresmaeel-selakjani P, Davachi S M, Kaffashi B, Hassani A, Bahmeyi A. Effect of lignin removal on mechanical, thermal, and morphological properties of polylactide/starch/rice husk blend used in food packaging. Journal of Applied Polymer Science, 2014, 131(22): 41095–41102 https://doi.org/10.1002/app.41095
18
Ding Z, Zhong L, Wang X, Zhang L. Effect of lignin-cellulose nanofibrils on the hydrophilicity and mechanical properties of polyethersulfone ultrafiltration membranes. High Performance Polymers, 2016, 28(10): 1192–1200 https://doi.org/10.1177/0954008315621611
19
Davachi S M, Bakhtiari S, Pouresmaeel-selakjani P, Mohammadi-rovshandeh J, Kaffashi B, Davoodi S, Yousefi A. Investigating the effect of treated rice straw in PLLA/starch composite: Mechanical, thermal, rheological, and morphological study. Advances in Polymer Technology, 2015, DOI: 10.1002/adv.21634
20
Wen X, Lin Y, Han C, Zhang K, Ran X, Li Y, Dong L. Thermomechanical and optical properties of biodegradable poly(L-lactide)/silica nanocomposites by melt compounding. Journal of Applied Polymer Science, 2009, 114(6): 3379–3388 https://doi.org/10.1002/app.30896
21
Liu C, Tobin R. Effects of interadsorbate interactions on surface resistivity: Oxygen on sulfur-predosed Cu (100). Journal of Chemical Physics, 2008, 128(24): 244702 https://doi.org/10.1063/1.2940336
22
Zhang X, Gong Z, Li J, Lu T. Intermolecular sulfur∙∙∙oxygen interactions: Theoretical and statistical investigations. Journal of Chemical Information and Modeling, 2015, 55(10): 2138–2153 https://doi.org/10.1021/acs.jcim.5b00177
23
Bouajila J, Dole P, Joly C, Limare A. Some laws of a lignin plasticization. Journal of Applied Polymer Science, 2006, 102(2): 1445–1451 https://doi.org/10.1002/app.24299
24
Sivashinsky N, Tanny G. Ionic heterogeneities in sulfonated polysulfone films. Journal of Applied Polymer Science, 1983, 28(10): 3235–3245 https://doi.org/10.1002/app.1983.070281018
25
Peinemann K V, Abetz V, Simon P F. Asymmetric superstructure formed in a block copolymer via phase separation. Nature Materials, 2007, 6(12): 992–996 https://doi.org/10.1038/nmat2038
26
Nonjola P T, Mathe M K, Modibedi R M. Chemical modification of polysulfone: Composite anionic exchange membrane with TiO2 nano-particles. International Journal of Hydrogen Energy, 2013, 38(12): 5115–5121 https://doi.org/10.1016/j.ijhydene.2013.02.028
27
Shirazi Y, Ghadimi A, Mohammadi T. Recovery of alcohols from water using polydimethylsiloxane-silica nanocomposite membranes: Characterization and pervaporation performance. Journal of Applied Polymer Science, 2012, 124(4): 2871–2882 https://doi.org/10.1002/app.35313
28
Marchese J, Anson M, Ochoa N, Prádanos P, Palacio L, Hernández A. Morphology and structure of ABS membranes filled with two different activated carbons. Chemical Engineering Science, 2006, 61(16): 5448–5454 https://doi.org/10.1016/j.ces.2006.04.013
29
Yan L, Li Y S, Xiang C B, Xianda S. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. Journal of Membrane Science, 2006, 276(1-2): 162–167 https://doi.org/10.1016/j.memsci.2005.09.044
30
Rahimpour A, Madaeni S S, Mansourpanah Y. Nano-porous polyethersulfone (PES) membranes modified by acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as additives in the gelation media. Journal of Membrane Science, 2010, 364(1-2): 380–388 https://doi.org/10.1016/j.memsci.2010.08.046
31
Barzin J, Sadatnia B. Correlation between macrovoid formation and the ternary phase diagram for polyethersulfone membranes prepared from two nearly similar solvents. Journal of Membrane Science, 2008, 325(1): 92–97 https://doi.org/10.1016/j.memsci.2008.07.003
32
Senthilkumar S, Rajesh S, Jayalakshmi A, Aishwarya G, Mohan D R. Preparation and performance evaluation of poly(ether-imide) incorporated polysulfone hemodialysis membranes. Journal of Polymer Research, 2012, 19(6): 1–11 https://doi.org/10.1007/s10965-012-9867-8
33
Peyravi M, Rahimpour A, Jahanshahi M. Developing nanocomposite PI membranes: Morphology and performance to glycerol removal at the downstream processing of biodiesel production. Journal of Membrane Science, 2015, 473: 72–84 https://doi.org/10.1016/j.memsci.2014.08.009