There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this interest, there is, however, a lack in fundamental understanding of the underlying processes in such systems. While a lot of experimental research is already being carried out to gain this understanding, only recently the first simulations have appeared in the literature. In this contribution, an overview is presented on atomic scale simulations of plasma catalytic processes as carried out in our group. In particular, this contribution focusses on plasma-assisted catalyzed carbon nanostructure growth, and plasma catalysis for greenhouse gas conversion. Attention is paid to what can routinely be done, and where challenges persist.
. [J]. Frontiers of Chemical Science and Engineering, 2018, 12(1): 145-154.
Erik C. Neyts. Atomistic simulations of plasma catalytic processes. Front. Chem. Sci. Eng., 2018, 12(1): 145-154.
Devins J C, Burton M. Formation of hydrazine in electric discharge decomposition of ammonia. Journal of the American Chemical Society, 1954, 76(10): 2618–2626 https://doi.org/10.1021/ja01639a006
2
Henis J M. Nitrogen oxide decomposition process. US Patent 3983021, 1976
3
Neyts E C, Ostrikov K, Sunkara M K, Bogaerts A. Plasma catalysis: Synergistic effects at the nanoscale. Chemical Reviews, 2015, 115(24): 13408–13446 https://doi.org/10.1021/acs.chemrev.5b00362
4
Russ H, Neiger M, Lang J E. Simulation of micro discharges for the optimization of energy requirements for removal of NOx from exhaust gases. IEEE Transactions on Plasma Science, 1999, 27(1): 38–39 https://doi.org/10.1109/27.763019
5
Chang J S, Kostov K G, Urashima K, Yamamoto T, Okayasu Y, Kato T, Iwaizumi T, Yoshimura K. Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and adsorbent hybrid systems. IEEE Transactions on Industry Applications, 2002, 36(5): 1251–1259 https://doi.org/10.1109/28.871272
6
Whitehead J C. Plasma-catalysis the known knowns, the known unknowns and the unknown unknowns. Journal of Physics. D, Applied Physics, 2016, 49(24): 243001 https://doi.org/10.1088/0022-3727/49/24/243001
7
Neyts E C, Bogaerts A. Understanding plasma catalysis through modelling and simulation—a review. Journal of Physics. D, Applied Physics, 2014, 47(22): 224010 https://doi.org/10.1088/0022-3727/47/22/224010
8
Voter A F. Parallel replica method for dynamics of infrequent events. Physical Review B: Condensed Matter and Materials Physics, 1998, 57(22): R13985–R13988 https://doi.org/10.1103/PhysRevB.57.R13985
9
Perez D, Uberuaga B P, Voter A F. The parallel replica dynamics method—coming of age. Computational Material Science, 2015, 100, part B, 90–103
10
Voter A F. A method for accelerating the molecular dynamics simulation of infrequent events. Journal of Chemical Physics, 1997, 106(11): 4665–4677 https://doi.org/10.1063/1.473503
Sörensen M R, Voter A F. Temperature-accelerated dynamics simulation of infrequent events. Journal of Chemical Physics, 2000, 112: 9599 https://doi.org/10.1063/1.481576
13
Montalenti F, Voter A F. Exploiting past visits or minimum barrier knowledge to gain further boost in the temperature-accelerated dynamics method. Journal of Chemical Physics, 2002, 116(12): 4819 https://doi.org/10.1063/1.1449865
14
Bal K M, Neyts E C. Merging metadynamics into hyperdynamics: Accelerated molecular simulations reaching time scales from microseconds to seconds. Journal of Chemical Theory and Computation, 2015, 11(10): 4545–4554 https://doi.org/10.1021/acs.jctc.5b00597
15
Bal K M, Neyts E C. Direct observation of realistic-temperature fuel combustion mechanisms in atomistic simulations. Chemical Science (Cambridge), 2016, 7(8): 5280–5286 https://doi.org/10.1039/C6SC00498A
16
Fu C D, Oliveira L F L, Pfaendtner J. Assessing generic collective variables for determining reaction rates in metadynamics simulations. Journal of Chemical Theory and Computation, 2017, 13(3): 968–973 https://doi.org/10.1021/acs.jctc.7b00038
17
Neyts E C, Brault P. Molecular dynamics simulations for plasma-surface interactions. Plasma Processes and Polymers, 2016, 14(1-2): 1600145 https://doi.org/10.1007/s11090-015-9662-5
18
Shibuta Y, Maruyama S. Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method. Chemical Physics Letters, 2003, 382(3-4): 381–386 https://doi.org/10.1016/j.cplett.2003.10.080
19
Ding F, Bolton K, Rosén A. Nucleation and growth of single-walled carbon nanotubes: A molecular dynamics study. Journal of Physical Chemistry B, 2004, 108(45): 17369–17377 https://doi.org/10.1021/jp046645t
20
Neyts E C, Shibuta Y, van Duin A C T, Bogaerts A. Catalyzed growth of carbon nanotube with definable chirality by hybrid molecular dynamics—force biased Monte Carlo simulations. ACS Nano, 2010, 4(11): 6665–6672 https://doi.org/10.1021/nn102095y
21
Page A J, Yamane H, Ohta Y, Irle S, Morokuma K. QM/MD simulation of SWNT nucleation on transition-metal carbide nanoparticles. Journal of the American Chemical Society, 2010, 132(44): 15699–15707 https://doi.org/10.1021/ja106264q
22
Amara H, Bichara C, Ducastelle F. Understanding the nucleation mechanisms of carbon nanotubes in catalytic chemical vapor deposition. Physical Review Letters, 2008, 100(5): 056105 https://doi.org/10.1103/PhysRevLett.100.056105
23
Zhao J, Martinez-Limia A, Balbuena P B. Understanding catalysed growth of single-wall carbon nanotubes. Nanotechnology, 2005, 16(7): S575–S581 https://doi.org/10.1088/0957-4484/16/7/035
24
Khalilov U, Bogaerts A, Neyts E C. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors. Nature Communications, 2015, 6: 10306 https://doi.org/10.1038/ncomms10306
25
Elliott J A, Shibuta Y, Amara H, Bichara C, Neyts E C. Atomistic modelling of CVD synthesis of carbon nanotubes and graphene. Nanoscale, 2013, 5(15): 6662–6676 https://doi.org/10.1039/c3nr01925j
26
Page A J, Ding F, Irle S, Morokuma K. Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: A review. Reports on Progress in Physics, 2015, 78(3): 036501 https://doi.org/10.1088/0034-4885/78/3/036501
27
Neyts E C. PECVD growth of carbon nanotubes: From experiment to simulation. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 2012, 30: 030803
28
Meyyappan M. A review of plasma enhanced chemical vapour deposition of carbon nanotubes. Journal of Physics. D, Applied Physics, 2009, 42(21): 213001 https://doi.org/10.1088/0022-3727/42/21/213001
29
Diega G G, Gilbert D M, Javier A, Perla B B. Dynamic evolution of supported metal nanocatalyst/carbon structure during single-walled carbon nanotube growth. ACS Nano, 2012, 6(1): 720–735 https://doi.org/10.1021/nn204215c
30
Diarra M, Zappelli A, Amara H, Ducastelle F, Bichara C. Importance of carbon solubility and wetting properties of nickel nanoparticles for single wall nanotube growth. Physical Review Letters, 2012, 109(18): 185501 https://doi.org/10.1103/PhysRevLett.109.185501
31
Neyts E C, van Duin A C T, Bogaerts A. Insights in the plasma assisted growth of carbon nanotubes through atomic scale simulations: Effect of electric field. Journal of the American Chemical Society, 2012, 134(2): 1256–1260 https://doi.org/10.1021/ja2096317
32
Mees M J, Pourtois G, Neyts E C, Thijsse B J, Stesmans A. Uniform-acceptance force-bias Monte Carlo method with time scale to study solid-state diffusion. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(13): 134301 https://doi.org/10.1103/PhysRevB.85.134301
33
Bal K M, Neyts E C. On the time scale associated with Monte Carlo simulations. Journal of Chemical Physics, 2014, 141(20): 204104 https://doi.org/10.1063/1.4902136
34
Timonova M, Groenewegen J, Thijsse B J. Modeling diffusion and phase transitions by a uniform-acceptance force-bias Monte Carlo method. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(14): 144107 https://doi.org/10.1103/PhysRevB.81.144107
35
Neyts E C, Bogaerts A. Combining molecular dynamics with Monte Carlo simulations: Implementations and applications. Theoretical Chemistry Accounts, 2013, 132(2): 1320 https://doi.org/10.1007/s00214-012-1320-x
36
Neyts E C, Thijsse B J, Mees M J, Bal K M, Pourtois G. Establishing uniform acceptance in force biased Monte Carlo simulations. Journal of Chemical Theory and Computation, 2012, 8(6): 1865–1869 https://doi.org/10.1021/ct2008268
37
Neyts E C, van Duin A C T, Bogaerts A. Changing chirality during single-walled carbon nanotube growth: A reactive molecular dynamics/Monte Carlo study. Journal of the American Chemical Society, 2011, 133(43): 17225–17231 https://doi.org/10.1021/ja204023c
38
Kato T, Hatakeyama R. Formation of freestanding single-walled carbon nanotubes by plasma-enhanced CVD. Chemical Vapor Deposition, 2006, 12(6): 345–352 https://doi.org/10.1002/cvde.200506451
39
Nozaki T, Karatsu T, Ohnishi K, Okazaki K. A pressure-dependent selective growth of single-walled and multi-walled carbon nanotubes using plasma enhanced chemical vapor deposition. Carbon, 2010, 48(1): 232–238 https://doi.org/10.1016/j.carbon.2009.09.010
40
Neyts E C. On the role of ions in plasma catalytic carbon nanotube growth: A review. Frontiers of Chemical Science and Engineering, 2015, 9(2): 154–162 https://doi.org/10.1007/s11705-015-1515-5
41
Neyts E C, Ostrikov K, Han Z J, Kumar S, van Duin A C T, Bogaerts A. Defect healing and enhanced nucleation of carbon nanotubes by low-energy ion bombardment. Physical Review Letters, 2013, 110(6): 065501 https://doi.org/10.1103/PhysRevLett.110.065501
42
Neyts E C, Bogaerts A. Ion irradiation for improved graphene network formation in carbon nanotube growth. Carbon, 2014, 77: 790–795 https://doi.org/10.1016/j.carbon.2014.05.083
43
Shariat M, Hosseini S I, Shokri B, Neyts E C. Plasma enhanced growth of single walled carbon nanotubes at low temperature: A reactive molecular dynamics simulation. Carbon, 2013, 65: 269–276 https://doi.org/10.1016/j.carbon.2013.08.025
44
Shariat M, Shokri B, Neyts E C. On the low-temperature growth mechanism of single walled carbon nanotubes in plasma enhanced chemical vapor deposition. Chemical Physics Letters, 2013, 590: 131–135 https://doi.org/10.1016/j.cplett.2013.10.061
45
Chen H L, Lee H M, Chen S H, Chao Y, Chang M B. Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration and prospects. Applied Catalysis B: Environmental, 2008, 85(1-2): 1–9 https://doi.org/10.1016/j.apcatb.2008.06.021
46
Van Durme J, Dewulf J, Leys C, Van Langenhove H. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B: Environmental, 2008, 78(3-4): 324–333 https://doi.org/10.1016/j.apcatb.2007.09.035
47
Kim H H, Ogata A. Nonthermal plasma activates catalyst: From current understanding and future prospects. European Physical Journal Applied Physics, 2001, 55(1): 13806 https://doi.org/10.1051/epjap/2011100444
48
Zhang Y R, Van Laer K, Neyts E C, Bogaerts A. Can plasma be formed in catalyst pores? A modeling investigation. Applied Catalysis B: Environmental, 2016, 185: 56–67 https://doi.org/10.1016/j.apcatb.2015.12.009
49
Zhang Y R, Neyts E C, Bogaerts A. Influence of the material dielectric constant on plasma generation inside catalyst pores. Journal of Physical Chemistry C, 2016, 120(45): 25923–25934 https://doi.org/10.1021/acs.jpcc.6b09038
50
Van Laer K, Bogaerts A. Fluid modelling of a packed bed dielectric barrier discharge plasma reactor. Plasma Sources Science & Technology, 2016, 25(1): 015002 https://doi.org/10.1088/0963-0252/25/1/015002
51
Van Laer K, Bogaerts A. Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor. Energy Technology (Weinheim), 2015, 3(10): 1038–1044 https://doi.org/10.1002/ente.201500127
52
Zhang Y, Wang H Y, Jiang W, Bogaerts A. Two-dimensional particle-in-cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure. New Journal of Physics, 2015, 17(8): 083056 https://doi.org/10.1088/1367-2630/17/8/083056
53
Neyts E C, Bal K M. Effect of electric fields on plasma catalytic hydrocarbon oxidation from atomistic simulations. Plasma Processes and Polymers, 2017, 14(6): e1600158 doi:10.1002/ppap.201600158
54
Somers W, Bogaerts A, van Duin A C T, Neyts E C. Plasma species interacting with nickel surfaces: Towards an atomic scale understanding of plasma-catalysis. Journal of Physical Chemistry C, 2012, 116(39): 20958–20965 https://doi.org/10.1021/jp307380w
55
Somers W, Bogaerts A, van Duin A C T, Huygh S, Bal K M, Neyts E C. Temperature influence on the reactivity of plasma species on a nickel catalyst surface: An atomic scale study. Catalysis Today, 2014, 211: 131–136 https://doi.org/10.1016/j.cattod.2013.02.010
56
Somers W, Bogaerts A, van Duin A C T, Neyts E C. Interactions of plasma species on nickel catalysts: A reactive molecular dynamics study on the influence of temperature and surface structure. Applied Catalysis B: Environmental, 2014, 154-155: 1–8 https://doi.org/10.1016/j.apcatb.2014.01.061
Halonen L, Bernasek S L, Nesbitt D J. Reactivity of vibrationally excited methane on nickel surfaces. Journal of Chemical Physics, 2001, 115(12): 5611–5619 https://doi.org/10.1063/1.1398075
59
Jackson B, Nave S. The dissociative chemisorption of methane on Ni(111): The effects of molecular vibration and lattice motion. Journal of Chemical Physics, 2013, 138(17): 174705 https://doi.org/10.1063/1.4802008
60
Shirazi M, Neyts E C, Bogaerts A. DFT study of Ni-catalyzed plasma dry reforming of methane. Applied Catalysis B: Environmental, 2017, 205: 605–614 https://doi.org/10.1016/j.apcatb.2017.01.004
61
Huygh S, Neyts E C. Adsorption of C and CHx radicals on anatase (001) and the influence of oxygen vacancies. Journal of Physical Chemistry C, 2015, 119(9): 4908–4921 https://doi.org/10.1021/jp5127249
62
Huygh S, Bogaerts A, Neyts E C. How oxygen vacancies activate CO2 dissociation on TiO2 anatase (001). Journal of Physical Chemistry C, 2016, 120(38): 21659–21669 https://doi.org/10.1021/acs.jpcc.6b07459