Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2018, Vol. 12 Issue (4): 867-877   https://doi.org/10.1007/s11705-018-1768-x
  本期目录
Research and development of hydrocracking catalysts and technologies in China
Chong Peng1, Yanze Du1, Xiang Feng2(), Yongkang Hu1, Xiangchen Fang1
1. Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116000, China
2. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China
 全文: PDF(165 KB)   HTML
Abstract

Hydrocracking of petroleum feedstock represents a compelling route for the production of industrial clean fuels, which has triggered the continuous research and development of core technology related areas such as catalysts, reaction engineering and engineering design. This review particularly focuses on the research and development of catalysts and catalytic processes for hydrocracking of petroleum feedstock in China. Hydroprocessing technologies of China keep pace with the up-to-date progress of the world, and some of the technologies have achieved leading role in the world. It is noted that China Petroleum and Chemical Corporation has a full range of hydroprocessing technologies and provides corresponding “tailor-made” catalysts. Through the efforts of several generations, 20 categories of the catalysts including more than 60 brands have been developed, among which more than 40 brands have been successfully applied for more than 130 times. Importantly, the pivotal technical improvements including the deep drawing vacuum gas-oil (VGO) and de-asphalting oil hydrocracking technology to improve material adaptability, the high value-added hydrogenation technology to convert high aromatic diesel conversion to naphtha, the hydrocracking technology using VGO-catalytic diesel blends, the Fushun Research Institute of Petroleum and Petrochemicals’ diesel to gasoline and diesel hydrocracking technologies, and the Sheer hydrocracking technology to reduce energy are reviewed.

Key wordshydrocracking    process    catalyst    China
收稿日期: 2018-02-05      出版日期: 2019-01-03
Corresponding Author(s): Xiang Feng,Xiangchen Fang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2018, 12(4): 867-877.
Chong Peng, Yanze Du, Xiang Feng, Yongkang Hu, Xiangchen Fang. Research and development of hydrocracking catalysts and technologies in China. Front. Chem. Sci. Eng., 2018, 12(4): 867-877.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-018-1768-x
https://academic.hep.com.cn/fcse/CN/Y2018/V12/I4/867
Fig.1  
Catalysts FC-14/FC-16 Catalyst abroad FC-14/FC-16 Catalyst abroad
Feed oil VGO:heavy diesel= 82:18 VGO
Inlet pressure /MPa 18.0 18.4 18.0 18.1
WTAB /°C 372.6 401.1 373.3 404.0
LHSV /h?1 0.94 1.06 0.89 1.02
Jet fuel /% 45.29 33.91 39.96 33.10
Diesel /% 27.79 31.30 29.21 29.29
Unconverted oil/% 3.36 9.37 7.35 10.00
Jet fuel and diese l/% 73.08 65.21 69.17 62.39
Hydrogen consumption /(Nm3·t1) 239 259 211 244
Jet Fuel
Dry point /°C 276 263 270 263
Freezing point /°C <?50 <?50 <?50 <?50
Silver corrosion /level 1 1 1 1
Diesel
Flash point /°C >90 >90 >90 >90
Solidification point /°C ?17 +1 ?18 +1
Tab.1  
Name of feedstock Deep drawing VGO Experiment conditions
Density at 20°C/(g·cm3) 0.9101 Process, One through single-stage
Distillation /°C Catalyst, FF-36/FC-32/FF-36
IBP /10% 331/385 Total pressure, 16.4 MPa
50% /90% 463/562 Total LHSV, 0.61 h?1
93% 571 Average reaction temperature, 385°C
S/(µg·g1) 11900 Chemical hydrogen consumption, 2.38%
N/(µg·g1) 1022
BMCI 41.7
Tab.2  
Name of feedstock Deep drawing VGO Name of feedstock Deep drawing VGO
Yield of main products and properties Density at 20°C/(g?cm3) 0.8125
Heavy naphtha Cetane number index (ASTM 4737-96a) 73.3
Yield/% 28.16 Freezing point°C ?25
Aromatic potential/% 52.1 S/(µg·g1) <10
Kerosene Residue (>250°C)
Yield /% 19.83 Yield /% 44.07
Density at 20°C/(g·cm3) 0.8029 Density at 20°C/(g·cm3) 0.8318
Freezing point /°C <?60 BMCI 11.2
Yandian /mm 28 Residue (>350°C)
Aromatic /v-% 5.5 Yield /% 30.29
Light diesel Density at 20°C/(g·cm3) 0.8403
Yield /% 13.78 BMCI 10.2
Tab.3  
Name of feedstock Deep drawing VGO
Density at 20°C/(g·cm3) 0.9101
Distillation /°C 331–600
S /(µg·g1) 11900
N /(µg·g1) 1022
BMCI 41.7
Experiment conditions
Catalyst FZC and FF-36/FC-14 and FF-36
Total pressure/MPa 16.5
Total LHSV (for fresh feed) /h?1 0.43
Hydrogen /oil ratio 1000/1200
Process One through single-stage Partial cycle single-stage Full cycle single-stage
Average reaction temperature /°C 393/403 388/398 393/403
Chemical hydrogen consumption /% 2.15 2.09 2.13
Tab.4  
Name of feedstock Deep drawing VGO
Process One through single-stage Partial cycle single-stage Full cycle single-stage
Yield & properties of main products
Heavy naphtha
Yield /% 17.97 16.22 20.74
Aromatic potential /% 47.0 49.5 45.1
Kerosene
Yield /% 36.25 35.08 41.03
Density at 20°C/(g·cm3) 0.8010 0.8025 0.7994
Freezing point/°C <?50 <?50 <?50
Yandian /mm 30 30 30
Aromatic /v-% 4.3 4.1 3.4
Diesel
Yield /% 24.14 30.01 30.90
Density at 20°C/(g·cm3) 0.8302 0.8329 0.8324
Cetane (practical) 59.2 60.5 59.5
Freezing point /°C ?29 ?26 ?47
S /(µg·g1) <5 <5 <5
Residue (back oil)
Yield /% 15.28 14.20 0
Density at 20°C /(g·cm?3) 0.8559 0.8523 0.8547
Viscosity index 116 108 105
Freezing point /°C ?36 ?14 ?29
Tab.5  
Feed DAO VGO Mix oil 1 Mix oil 2 Mix oil 3
DAO blending ratio /% ? ? 10 20 30
Density at 20°C /(g·cm3) 0.9580 0.9111 0.9165 0.9221 0.9255
Distillation /°C ? ? ? ? ?
IBP /10% 365/424 335/385 340/387 345/388 344/387
30% /50% 477/543 406/443 419/448 423/451 427/455
70% /90% ?/? 470/504 476/515 479/533 488/?
95% /EBP (T56%:560) 516/530 (T93%:560) (T92%:542) (T88%:542)
Residue carbon /% 3.80 0.09 0.31 0.52 0.94
Paraffin /% 13.1 21.9 19.7 18.9 18.5
Cycloparaffin /% 20.8 33.5 32.7 32.4 31.4
Aromatic /% 62.0 44.6 45.6 46.5 46.4
Resin /% 4.1 0 2.0 2.2 3.7
S /% 1.52 1.26 1.29 1.30 1.32
N /(µg·g1) 2428 1352 1473 1601 1732
Ni /(µg·g1) 6.74 <0.01 0.68 1.33 2.00
V /(µg·g1) 6.85 0.04 0.71 1.40 2.08
Tab.6  
Feedstock Mix oil 1 Mix oil 2 Mix oil 3
Catalyst FF-36/FC-32 FF-36/FC-32 FF-36/FC-32
Reaction temperature Benchmark a/Benchmark b Benchmark a+7/ Benchmark b+5 Benchmark a+18/ Benchmark b+12
Yield of light naphtha /% 3.58 3.78 4.08
Heavy naphtha
Yield /% 19.93 20.06 20.98
Aromatic potential /% 59.9 60.0 62.0
Kerosene
Yield /% 21.92 21.34 21.94
Yandian /mm 21 21 20
Aromatic /v-% 7.6 7.9 11.6
Diesel
Yield /% 21.92 21.34 21.94
Cetane number 61.2 60.0 60.0
Residue
Yield /% 39.80 40.00 38.20
Viscosity index 152 137 159
Tab.7  
Feed Middle east VGO Catalytic diesel Mix feedstock
Density at 20°C /(g·cm3) 0.9160 0.9350 0.9195
Distillation /°C 332?504 183?393 176–506
S:N /% 1.72/0.14 0.38/0.07 1.29/0.11
C:H /% 85.69/12.45 89.44/10.11 87.05/11.55
BMCI 39.4 75.2 56.9
Tab.8  
Feed Mix feedstock
Catalyst FF-46/FC-32
Total pressure /MPa 15.3
Total LHSV /h1 0.61
Average reaction temperature /°C 378
Main products distribution
Light naphtha 3.50
Heavy naphtha 23.62
Kerosene 34.58
Diesel 25.23
Residue 12.42
Tab.9  
Properties of main products Value
Heavy naphtha
Aromatic potential /% 66.7
Kerosene
Density at 20°C /(g·cm3) 0.8080
Yandian /mm 23
Aromatic /v-% 10.5
Diesel
Density at 20°C /(g·cm3) 0.8204
Freezing point /°C ?40
S:N /(µg·g1) <10/<?2
Residue
BMCI 13.1
Yield of liquid C5+ 99.35
Chemical hydrogen consumption 2.97
Tab.10  
Fig.2  
1 ZTian, D Liang, LLin. Research and development of hydroisomerization and hydrocracking catalysts in dalian institute of chemical physics. Chinese Journal of Catalysis, 2009, 30(8): 705–710
https://doi.org/10.1016/S1872-2067(08)60120-5
2 MRojas, S Zeppieri. Simulation of an industrial fixed-bed reactor with cocurrent downflow for hydrogenation of pygas. Catalysis Today, 2014, 220-222: 237–247
https://doi.org/10.1016/j.cattod.2013.07.015
3 HOrtiz-Moreno, J Ramíreza, FSanchez-Minero, RCuevas, JAncheyta. Hydrocracking of Maya crude oil in a slurry-phase batch reactor. II. Effect of catalyst load. Fuel, 2014, 130: 263–272
https://doi.org/10.1016/j.fuel.2014.03.050
4 HMartinez-Grimaldo, HOrtiz-Moreno, FSanchez-Minero, JRamírez, RCuevas-Garcia, JAncheyta-Juarez. Hydrocracking of Maya crude oil in a slurry-phase reactor. I. Effect of reaction temperature. Catalysis Today, 2014, 220-222: 295–300
https://doi.org/10.1016/j.cattod.2013.08.012
5 F AKhowatimy, YPriastomo, EFebriyanti, HRiyantoko, WTrisunaryantia. Study of waste lubricant hydrocracking into fuel fraction over the combination of Y-Zeolite and ZnO catalyst. Procedia Environmental Sciences, 2014, 20: 225–234
https://doi.org/10.1016/j.proenv.2014.03.029
6 H MLababidi, D Chedadeh, M RRiazi, AAl-Qattan, HAl-Adwani. Prediction of product quality for catalytic hydrocracking of vacuum gas oil. Fuel, 2011, 90(2): 719–727
https://doi.org/10.1016/j.fuel.2010.09.046
7 SBezergianni, A Dimitriadis, DKaronis. Diesel decarbonization via effective catalytic co-hydroprocessing of residual lipids with gas-oil. Fuel, 2014, 136: 366–373
https://doi.org/10.1016/j.fuel.2014.07.038
8 KMurata, M Inaba, ITakahara, YLiu. Selective hydrocarbon production by the hydrocracking of glucose. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110(2): 295–307
https://doi.org/10.1007/s11144-013-0619-5
9 EFurimsky. Hydroprocessing in aqueous phase. Industrial & Engineering Chemistry Research, 2013, 52(50): 17695–17713
https://doi.org/10.1021/ie4034768
10 GWang, Z K Li, H Huang, XLan, C MXu, J SGao. Synergistic process for coker gas oil and heavy cycle oil conversion for maximum light production. Industrial & Engineering Chemistry Research, 2010, 49(22): 11260–11268
https://doi.org/10.1021/ie100950c
11 ZTang, Y Zhang, QGuo. Catalytic hydrocracking of pyrolytic lignin to liquid fuel in supercritical ethanol. Industrial & Engineering Chemistry Research, 2010, 49(5): 2040–2046
https://doi.org/10.1021/ie9015842
12 THanaoka, T Miyazawa, KShimura, SHirata. Jet fuel synthesis in hydrocracking of fischer-tropsch product over Pt-loaded zeolite catalysts prepared using microemulsions. Fuel Processing Technology, 2015, 129: 139–146
https://doi.org/10.1016/j.fuproc.2014.09.011
13 SZhang, R Xu, EDurham, C BRoberts. Middle distillates production via fischer-tropsch synthesis with integrated upgrading under supercritical conditions. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(7): 2573–2583
https://doi.org/10.1002/aic.14493
14 PŠimáček, DKubička, MPospíšil, VRubáš, LHora, G Šebor. Fischer-tropsch product as a co-feed for refinery hydrocracking unit. Fuel, 2013, 105: 432–439
https://doi.org/10.1016/j.fuel.2012.08.020
15 D FRodríguez Vallejo, Ade Klerk. Improving the interface between fischer-tropsch synthesis and refining. Energy & Fuels, 2013, 27(6): 3137–3147
https://doi.org/10.1021/ef400560z
16 G CLaredo, P M Vega-Merino, P S Hernández. Light cycle oil upgrading to high quality fuels and petrochemicals: A review. Industrial & Engineering Chemistry Research, 2018, 57(22): 7315–7321
https://doi.org/10.1021/acs.iecr.8b00248
17 RSahu, B J Song, J S Im, Y P Jeon, C W Lee. A review of recent advances in catalytic hydrocracking of heavy residues. Journal of Industrial and Engineering Chemistry, 2015, 27: 12–24
https://doi.org/10.1016/j.jiec.2015.01.011
18 M JAngeles, C Leyva, JAncheyta, SRamírez. A review of experimental procedures for heavy oil hydrocracking with dispersed catalyst. Catalysis Today, 2014, 220: 274–294
https://doi.org/10.1016/j.cattod.2013.08.016
19 X CFang, M H Guan, S G Liao. Hydrocracking. Beijing: China Petrochemical Press, 2008, 110–118 (in Chinese)
20 JScherzer, A J Gruia. Hydrocracking Science and Technology. Florida: CRC Press, 1996, 1–305
21 XFeng, J Yang, X ZDuan, Y QCao, B XChen, W YChen, DLin, G Qian, DChen, C HYang, XZhou. Enhanced catalytic performance for propene epoxidation with H2 and O2 over bimetallic Au-Ag/Uncalcined TS-1 catalysts. ACS Catalysis, 2018, 8(9): 7799–7808
https://doi.org/10.1021/acscatal.8b01324
22 ZSong, X Feng, NSheng, DLin, Y C Li, Y B Liu, X B Chen, X G Zhou, D Chen, C HYang. Propene epoxidation with H2 and O2 on Au/TS-1 catalyst: Cost-effective synthesis of small-sized mesoporous TS-1 and its unique performance. Catalysis Today, 2018, in press
https://doi.org/10.1016/j.cattod.2018.04.068
23 CPeng, X Fang, RZeng. Development of high efficiency SHEER hydrocracking technology. Acta Petrolei Sinica, 2015, 31(3): 706–711
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed