Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2019, Vol. 13 Issue (3): 475-484   https://doi.org/10.1007/s11705-019-1809-0
  本期目录
A non-lithographic plasma nanoassembly technology for polymeric nanodot and silicon nanopillar fabrication
Athanasios Smyrnakis1(), Angelos Zeniou1,2, Kamil Awsiuk3, Vassilios Constantoudis1, Evangelos Gogolides1
1. Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”, Ag. Paraskevi, 15341 Attica, Greece
2. Department of Physics, University of Patras, 26504 Patras, Greece
3. M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Krakow, Poland
 全文: PDF(3361 KB)   HTML
Abstract

In this work, we present plasma etching alone as a directed assembly method to both create the nanodot pattern on an etched polymeric (PMMA) film and transfer it to a silicon substrate for the fabrication of silicon nanopillars or cone-like nanostructuring. By using a shield to control sputtering from inside the plasma reactor, the size and shape of the resulting nanodots can be better controlled by varying plasma parameters as the bias power. The effect of the shield on inhibitor deposition on the etched surfaces was investigated by time-of-flight secondary ion mass spectroscopy (ToF-SIMS) measurements. The fabrication of quasi-ordered PMMA nanodots of a diameter of 25 nm and period of 54 nm is demonstrated. Pattern transfer to the silicon substrate using the same plasma reactor was performed in two ways: (a) a mixed fluorine-fluorocarbon-oxygen nanoscale etch plasma process was employed to fabricate silicon nanopillars with a diameter of 25 nm and an aspect ratio of 5.6, which show the same periodicity as the nanodot pattern, and (b) high etch rate cryogenic plasma process was used for pattern transfer. The result is the nanostructuring of Si by high aspect ratio nanotip or nanocone-like features that show excellent antireflective properties.

Key wordsplasma    nanoassembly    etching    nanodots    nanopillars    nanofabrication
收稿日期: 2018-09-01      出版日期: 2019-08-22
Corresponding Author(s): Athanasios Smyrnakis   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2019, 13(3): 475-484.
Athanasios Smyrnakis, Angelos Zeniou, Kamil Awsiuk, Vassilios Constantoudis, Evangelos Gogolides. A non-lithographic plasma nanoassembly technology for polymeric nanodot and silicon nanopillar fabrication. Front. Chem. Sci. Eng., 2019, 13(3): 475-484.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1809-0
https://academic.hep.com.cn/fcse/CN/Y2019/V13/I3/475
Bias power /W Bias voltage /V PMMA etch rate /(μm·min1)
Unshielded Shielded Unshielded Shielded
0 10 8 0.37 0.44
50 22 133 0.90 1.30
150 88 262 1.07 2.00
250 136 348 1.57 2.50
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 E Gogolides, C Vassilios, K George, K Dimitrios, T Katerina, B George, V Marilena, T Angeliki. Controlling roughness: From etching to nanotexturing and plasma-directed organization on organic and inorganic materials. Journal of Physics. D, Applied Physics, 2011, 44(17): 174021
2 S Franssila. Optical Lithography. Introduction to Microfabrication. Hoboken: John Wiley & Sons, Ltd., 2010, 103–113
3 R H Stulen, D W Sweeney. Extreme ultraviolet lithography. IEEE Journal of Quantum Electronics, 1999, 35(5): 694–699
4 H C Pfeiffer. Direct write electron beam lithography: A historical overview. In: Proceedings of SPIE Photomask Technology. Monterey: SPIE, 2010, 782316
5 S Y Chou, P R Krauss, P J Renstrom. Nanoimprint lithography. Journal of Vacuum Science & Technology. B, 1996, 14(6): 4129–4133
6 H Schift. Nanoimprint lithography: An old story in modern times? A review. Journal of Vacuum Science & Technology. B, 2008, 26(2): 458
7 P Colson, C Henrist, R Cloots. Nanosphere lithography: A powerful method for the controlled manufacturing of nanomaterials. Journal of Nanomaterials, 2013, 2013: 1–19
8 G Zhang, D Wang. Colloidal lithography—the art of nanochemical patterning. Chemistry, an Asian Journal, 2009, 4(2): 236–245
9 C Haynes, P Van Duyne. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. Journal of Physical Chemistry B, 2001, 105: 5599–5611
10 I W Hamley. Nanostructure fabrication using block copolymers—Review. Nanotechnology, 2003, 14: 16
11 S Tallegas, T Baron, G Gay, C Aggrafeil, B Salhi, T Chevolleau, G Cunge, A Bsiesy, R Tiron, X Chevalier, et al. Block copolymer technology applied to nanoelectronics. Physica Status Solidi. C, Current Topics in Solid State Physics, 2013, 10(9): 1195–1206
12 K Seeger, R E Palmer. Fabrication of silicon cones and pillars using rough metal films as plasma etching masks. Applied Physics Letters, 1999, 74(11): 1627–1629
13 K Ostrikov. Plasma nanoscience: From nature’s mastery to deterministic plasma-aided nanofabrication. IEEE Transactions on Plasma Science, 2007, 35(2): 127–136
14 I Levchenko, K Ostrikov, K Diwan, K Winkler, D Mariotti. Plasma-driven self-organization of Ni nanodot arrays on Si(100). Applied Physics Letters, 2008, 93(18): 183102
15 C H Hsu, H C Lo, C F Chen, C T Wu, J S Hwang, D Das, J Tsai, L C Chen, K H Chen. Generally applicable self-masked dry etching technique for nanotip array fabrication. Nano Letters, 2004, 4(3): 471–475
16 M Gharghi, S Sivoththaman. Formation of nanoscale columnar structures in silicon by a maskless reactive ion etching process. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2006, 24(3): 723
17 J Muñoz-García, L Vázquez, M Castro, R Gago, A Redondo-Cubero, A Moreno-Barrado, R Cuerno. Self-organized nanopatterning of silicon surfaces by ion beam sputtering. Materials Science and Engineering R Reports, 2014, 86: 1–44
18 R Gago, L Vázquez, O Plantevin, T H Metzger, J Muñoz-García, R Cuerno, M Castro. Order enhancement and coarsening of self-organized silicon nanodot patterns induced by ion-beam sputtering. Applied Physics Letters, 2006, 89(23): 233101
19 F Frost, B Ziberi, A Schindler, B Rauschenbach. Surface engineering with ion beams: From self-organized nanostructures to ultra-smooth surfaces. Applied Physics. A, Materials Science & Processing, 2008, 91(4): 551–559
20 N Vourdas, D Kontziampasis, G Kokkoris, V Constantoudis, A Goodyear, A Tserepi, M Cooke, E Gogolides. Plasma directed assembly and organization: Bottom-up nanopatterning using top-down technology. Nanotechnology, 2010, 21(8): 85302
21 E Gogolides, A Tserepi, V Constandoudis, N Vourdas, G Boulousis, M E Vlachopoulou, K Tsougeni, D Kontziampasis. Method for the fabrication of periodic structures on polymers using plasma processes. European Patent, EP2300214, 2009-12-17
22 D Kontziampasis, V Constantoudis, E Gogolides. Plasma directed organization of nanodots on polymers: Effects of polymer type and etching time on morphology and order. Plasma Processes and Polymers, 2012, 9(9): 866–872
23 G Kokkoris, E Gogolides. The potential of ion-driven etching with simultaneous deposition of impurities for inducing periodic dots on surfaces. Journal of Physics. D, Applied Physics, 2012, 45(16): 165204
24 G Kokkoris. Towards control of plasma-induced surface roughness: Simultaneous to plasma etching deposition. European Physical Journal Applied Physics, 2011, 56(2): 24012
25 E Gogolides, A Zeniou. Variable Faraday shield for a substrate holder, a clamping ring, or an electrode, or their combination in a plasma reactor. European Patent, EP3261111, 2017-04-26
26 M K Vijaya-Kumar, V Constantoudis, E Gogolides, A V Pret, R Gronheid. Contact edge roughness metrology in nanostructures: Frequency analysis and variations. Microelectronic Engineering, 2012, 90: 126–130
27 G Kokkoris, N Vourdas, E Gogolides. Plasma etching and roughening of thin polymeric films: A fast, accurate, in situ method of surface roughness measurement. Plasma Processes and Polymers, 2008, 5(9): 825–833
28 R Dussart, T Tillocher, P Lefaucheux, M Boufnichel. Plasma cryogenic etching of silicon: From the early days to today’s advanced technologies. Journal of Physics. D, Applied Physics, 2014, 47(12): 123001
29 A Smyrnakis, E Almpanis, V Constantoudis, N Papanikolaou, E Gogolides. Optical properties of high aspect ratio plasma etched silicon nanowires: Fabrication-induced variability dramatically reduces reflectance. Nanotechnology, 2015, 26(8): 085301
30 K Ellinas, A Smyrnakis, A Malainou, A Tserepi, E Gogolides. “Mesh-assisted” colloidal lithography and plasma etching: A route to large-area, uniform, ordered nano-pillar and nanopost fabrication on versatile substrates. Microelectronic Engineering, 2011, 88(8): 2547–2551
31 H V Jansen. The black silicon method II. Microelectronic Engineering, 1995, 27: 475–480
32 H V Jansen. Black silicon method. VIII. A study of the performance of etching silicon using SF6-O2-based chemistry with cryogenical wafer cooling and a high density ICP source. Microelectronics Journal, 2001, 32: 769–777
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed