Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2019, Vol. 13 Issue (4): 636-653   https://doi.org/10.1007/s11705-019-1824-1
  本期目录
Photothermal materials for efficient solar powered steam generation
Fenghua Liu1, Yijian Lai1, Binyuan Zhao1(), Robert Bradley2,3, Weiping Wu4()
1. State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
3. MatSurf Technology Ltd., Cumbria, CA10 1NW, UK
4. Department of Electrical and Electronic Engineering, School of Mathematics, Computer Science and Engineering, City, University of London, Northampton Square, London, EC1V 0HB, UK
 全文: PDF(13235 KB)   HTML
Abstract

Solar powered steam generation is an emerging area in the field of energy harvest and sustainable technologies. The nano-structured photothermal materials are able to harvest energy from the full solar spectrum and convert it to heat with high efficiency. Moreover, the materials and structures for heat management as well as the mass transportation are also brought to the forefront. Several groups have reported their materials and structures as solutions for high performance devices, a few creatively coupled other physical fields with solar energy to achieve even better results. This paper provides a systematic review on the recent developments in photothermal nanomaterial discovery, material selection, structural design and mass/heat management, as well as their applications in seawater desalination and fresh water production from waste water with free solar energy. It also discusses current technical challenges and likely future developments. This article will help to stimulate novel ideas and new designs for the photothermal materials, towards efficient, low cost practical solar-driven clean water production.

Key wordssolar stream generation    plasmonics    porous carbon    photothermal materials    solar energy conversion efficiency    water vapor generation rate
收稿日期: 2018-12-01      出版日期: 2019-12-04
Corresponding Author(s): Binyuan Zhao,Weiping Wu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2019, 13(4): 636-653.
Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu. Photothermal materials for efficient solar powered steam generation. Front. Chem. Sci. Eng., 2019, 13(4): 636-653.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1824-1
https://academic.hep.com.cn/fcse/CN/Y2019/V13/I4/636
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Samples Carriers Solar absorption /% Energy conversion efficiency /% Evaporation rates
/(kg·m2·h1)
Ref.
CNT/macroporous silica Silica 82 1.31 [34]
Ag/diatomite Paper 92.2 1.39 [38]
CNT Arrays 99 30 [43]
CNT nanofluids 1.1 [45]
Porous N-doped graphene 80 1.5 [47]
Functionalized-rGO 48 0.47 [49]
Hierarchical graphene foam 85–95 91.4 1.4 [54]
rGO/MCE Cellulose membrane 60 0.838 [57]
Carbonized Mushroom 78 1.475 [61]
Flamed-treated wood Wood 72 1.05 [62]
Mesoporous bulk carbons driven from biomass Geololymer 90–95 1.58, 2.85, 5.90 and 7.55,
with 0, 1, 2 and 3 m·s−1 wind
[64]
HNG >95 94 3.2 [68]
MXene Ti3C2 PVDF Membrane 84 1.33 [74]
Ti2O3 Nanoparticles Cellulose membrane 92.5 92.1±3.2 1.32 [76]
GO-based aerogels 92 86.5 1.622 [79]
Carbon beads 1.28 [84]
Photo-electro-thermal Graphene 2.01–2.61 [85]
CNT modified filter paper Paper 75 1.15 [90]
Carbon sponge >95 85 1.31 [104]
Tab.1  
1 M A Shannon, P W Bohn, M Elimelech, J G Georgiadis, B J Marinas, A M Mayes. Science and technology for water purification in the coming decades. Nature, 2008, 452(7185): 301–310
https://doi.org/10.1038/nature06599
2 O S Burheim, F Seland, J G Pharoah, S Kjelstrup. Improved electrode systems for reverse electro-dialysis and electro-dialysis. Desalination, 2012, 285: 147–152
https://doi.org/10.1016/j.desal.2011.09.048
3 Y Mei, C Y Y Tang. Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination, 2018, 425: 156–174
https://doi.org/10.1016/j.desal.2017.10.021
4 C Huyskens, J Helsen, A B de Haan. Capacitive deionization for water treatment: Screening of key performance parameters and comparison of performance for different ions. Desalination, 2013, 328: 8–16
https://doi.org/10.1016/j.desal.2013.07.002
5 L F Greenlee, D F Lawler, B D Freeman, B Marrot, P Moulin. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Research, 2009, 43(9): 2317–2348
https://doi.org/10.1016/j.watres.2009.03.010
6 S Sobana, R C Panda. Review on modelling and control of desalination system using reverse osmosis. Reviews in Environmental Science and Biotechnology, 2011, 10(2): 139–150
https://doi.org/10.1007/s11157-011-9233-z
7 A Alkhudhiri, N Darwish, N Hilal. Membrane distillation: A comprehensive review. Desalination, 2012, 287: 2–18
https://doi.org/10.1016/j.desal.2011.08.027
8 L García-Rodríguez, C Gomez-Camacho. Conditions for economical benefits of the use of solar energy in multi-stage flash distillation. Desalination, 1999, 125(1-3): 133–138
https://doi.org/10.1016/S0011-9164(99)00131-9
9 D F Zhao, J L Xue, S Li, H Sun, Q D Zhang. Theoretical analyses of thermal and economical aspects of multi-effect distillation desalination dealing with high-salinity wastewater. Desalination, 2011, 273(2-3): 292–298
https://doi.org/10.1016/j.desal.2011.01.048
10 D C Alarcón-Padilla , L Garcia-Rodriguez. Application of absorption heat pumps to multi-effect distillation: A case study of solar desalination. Desalination, 2007, 212(1-3): 294–302
https://doi.org/10.1016/j.desal.2006.10.014
11 M Farid, A W Al-Hajaj. Solar desalination with a humidification-dehumidification cycle. Desalination, 1996, 106(1-3): 427–429
https://doi.org/10.1016/S0011-9164(96)00141-5
12 A D Khawaji, I K Kutubkhanah, J M Wie. Advances in seawater desalination technologies. Desalination, 2008, 221(1-3): 47–69
https://doi.org/10.1016/j.desal.2007.01.067
13 H Jin, G Lin, L Bai, A Zeiny, D Wen. Steam generation in a nanoparticle-based solar receiver. Nano Energy, 2016, 28: 397–406
https://doi.org/10.1016/j.nanoen.2016.08.011
14 N Farokhnia, P Irajizad, S M Sajadi, H Ghasemi. Rational micro/nanostructuring for thin-film evaporation. Journal of Physical Chemistry C, 2016, 120(16): 8742–8750
https://doi.org/10.1021/acs.jpcc.6b01362
15 Y Nagata, K Usui, M Bonn. Molecular mechanism of water evaporation. Physical Review Letters, 2015, 115(23): 236102
https://doi.org/10.1103/PhysRevLett.115.236102
16 C A Gueymard. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy, 2004, 76(4): 423–453
https://doi.org/10.1016/j.solener.2003.08.039
17 G Liu, J Xu, K Wang. Solar water evaporation by black photothermal sheets. Nano Energy, 2017, 41: 269–284
https://doi.org/10.1016/j.nanoen.2017.09.005
18 Z Deng, J Zhou, L Miao, C Liu, Y Peng, L Sun, S Tanemura. The emergence of solar thermal utilization: Solar-driven steam generation. Journal of Materials Chemistry. A, 2017, 5(17): 7691–7709
https://doi.org/10.1039/C7TA01361B
19 X Meng, L Liu, S Ouyang, H Xu, D Wang, N Zhao, J Ye. Nanometals for solar-to-chemical energy conversion: From semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Advanced Materials, 2016, 28(32): 6781–6803
https://doi.org/10.1002/adma.201600305
20 H Chen, L Shao, Q Li, J Wang. Gold nanorods and their plasmonic properties. Chemical Society Reviews, 2013, 42(7): 2679–2724
https://doi.org/10.1039/C2CS35367A
21 E Lukianova-Hleb, Y Hu, L Latterini, L Tarpani, S Lee, R A Drezek, J H Hafner, D O Lapotko. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano, 2010, 4(4): 2109–2123
https://doi.org/10.1021/nn1000222
22 Z Fang, Y R Zhen, O Neumann, A Polman, F J Garcia de Abajo, P Nordlander, N J Halas. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Letters, 2013, 13(4): 1736–1742
https://doi.org/10.1021/nl4003238
23 O Neumann, A S Urban, J Day, S Lal, P Nordlander, N J Halas. Solar vapor generation enabled by nanoparticles. ACS Nano, 2013, 7(1): 42–49
https://doi.org/10.1021/nn304948h
24 O Neumann, C Feronti, A D Neumann, A Dong, K Schell, B Lu, E Kim, M Quinn, S Thompson, N Grady, et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(29): 11677–11681
https://doi.org/10.1073/pnas.1310131110
25 N J Hogan, A S Urban, C Ayala-Orozco, A Pimpinelli, P Nordlander, N J Halas. Nanoparticles heat through light localization. Nano Letters, 2014, 14(8): 4640–4645
https://doi.org/10.1021/nl5016975
26 A Guo, Y Fu, G Wang, X Wang. Diameter effect of gold nanoparticles on photothermal conversion for solar steam generation. RSC Advances, 2017, 7(8): 4815–4824
https://doi.org/10.1039/C6RA26979F
27 Z Wang, Y Liu, P Tao, Q Shen, N Yi, F Zhang, Q Liu, C Song, D Zhang, W Shang, et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small, 2014, 10(16): 3234–3239
https://doi.org/10.1002/smll.201401071
28 Y Liu, S Yu, R Feng, A Bernard, Y Liu, Y Zhang, H Duan, W Shang, P Tao, C Song, et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Advanced Materials, 2015, 27(17): 2768–2774
https://doi.org/10.1002/adma.201500135
29 Y Liu, J Lou, M Ni, C Song, J Wu, N P Dasgupta, P Tao, W Shang, T Deng. Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 2016, 8(1): 772–779
https://doi.org/10.1021/acsami.5b09996
30 S Yu, Y Zhang, H Duan, Y Liu, X Quan, P Tao, W Shang, J Wu, C Song, T Deng. The impact of surface chemistry on the performance of localized solar-driven evaporation system. Scientific Reports, 2015, 5(1): 13600
https://doi.org/10.1038/srep13600
31 K Bae, G Kang, S K Cho, W Park, K Kim, W J Padilla. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature Communications, 2015, 6(1): 10103
https://doi.org/10.1038/ncomms10103
32 L Tian, J Luan, K K Liu, Q Jiang, S Tadepalli, M K Gupta, R R Naik, S Singamaneni. Plasmonic biofoam: A versatile optically active material. Nano Letters, 2016, 16(1): 609–616
https://doi.org/10.1021/acs.nanolett.5b04320
33 L Zhou, Y Tan, D Ji, B Zhu, P Zhang, J Xu, Q Gan, Z Yu, J Zhu. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science Advances, 2016, 2(4): e1501227
https://doi.org/10.1126/sciadv.1501227
34 L Zhou, S Zhuang, C He, Y Tan, Z Wang, J Zhu. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy, 2017, 32: 195–200
https://doi.org/10.1016/j.nanoen.2016.12.031
35 C Liu, J Huang, C E Hsiung, Y Tian, J Wang, Y Han, A Fratalocchi. High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles. Advanced Sustainable Systems, 2017: 1600013
36 L Zhou, Y Tan, J Wang, W Xu, Y Yuan, W Cai, S Zhu, J Zhu. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016, 10(6): 393–398
https://doi.org/10.1038/nphoton.2016.75
37 H Wang, L Miao, S Tanemura. Morphology control of Ag polyhedron nanoparticles for cost-effective and fast solar steam generation. Solar RRL, 2017, 1(3-4): 1600023
https://doi.org/10.1002/solr.201600023
38 J Fang, Q Liu, W Zhang, J Gu, Y Su, H Su, C Guo, D Zhang. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. Journal of Materials Chemistry. A, 2017, 5(34): 17817–17821
https://doi.org/10.1039/C7TA05976K
39 F Chen, A S Gong, M Zhu, G Chen, S D Lacey, F Jiang, Y Li, Y Wang, J Dai, Y Yao, et al. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano, 2017, 11(4): 4275–4282
https://doi.org/10.1021/acsnano.7b01350
40 B Fang, C Yang, C Pang, W Shen, X Zhang, Y Zhang, W Yuan, X Liu. Broadband light absorber based on porous alumina structure covered with ultrathin iridium film. Applied Physics Letters, 2017, 110(14): 141103
https://doi.org/10.1063/1.4979581
41 L Zhang, J Xing, X Wen, J Chai, S Wang, Q Xiong. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination. Nanoscale, 2017, 9(35): 12843–12849
https://doi.org/10.1039/C7NR05149B
42 H Ghasemi, G Ni, A M Marconnet, J Loomis, S Yerci, N Miljkovic, G Chen. Solar steam generation by heat localization. Nature Communications, 2014, 5(1): 4449
https://doi.org/10.1038/ncomms5449
43 Z Yin, H Wang, M Jian, Y Li, K Xia, M Zhang, C Wang, Q Wang, M Ma, Q S Zheng, et al. Extremely black vertically aligned carbon nanotube arrays for solar steam generation. ACS Applied Materials & Interfaces, 2017, 9(34): 28596–28603
https://doi.org/10.1021/acsami.7b08619
44 N Selvakumar, S B Krupanidhi, H C Barshilia. Carbon nanotube-based tandem absorber with tunable spectral selectivity: Transition from near-perfect blackbody absorber to solar selective absorber. Advanced Materials, 2014, 26(16): 2552–2557
https://doi.org/10.1002/adma.201305070
45 X Wang, Y He, G Cheng, L Shi, X Liu, J Zhu. Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Conversion and Management, 2016, 130: 176–183
https://doi.org/10.1016/j.enconman.2016.10.049
46 Y Wang, L Zhang, P Wang. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1223–1230
https://doi.org/10.1021/acssuschemeng.5b01274
47 Y Ito, Y Tanabe, J Han, T Fujita, K Tanigaki, M Chen. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Advanced Materials, 2015, 27(29): 4302–4307
https://doi.org/10.1002/adma.201501832
48 P Zhang, J Li, L Lv, Y Zhao, L Qu. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano, 2017, 11(5): 5087–5093
https://doi.org/10.1021/acsnano.7b01965
49 J Yang, Y Pang, W Huang, S K Shaw, J Schiffbauer, M A Pillers, X Mu, S Luo, T Zhang, Y Huang, et al. Functionalized graphene enables highly efficient solar thermal steam generation. ACS Nano, 2017, 11(6): 5510–5518
https://doi.org/10.1021/acsnano.7b00367
50 L Zhang, R Li, B Tang, P Wang. Solar-thermal conversion and thermal energy storage of graphene foam-based composites. Nanoscale, 2016, 8(30): 14600–14607
https://doi.org/10.1039/C6NR03921A
51 X Li, W Xu, M Tang, L Zhou, B Zhu, S Zhu, J Zhu. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 13953–13958
https://doi.org/10.1073/pnas.1613031113
52 Q Jiang, L Tian, K K Liu, S Tadepalli, R Raliya, P Biswas, R R Naik, S Singamaneni. Bilayered biofoam for highly efficient solar steam generation. Advanced Materials, 2016, 28(42): 9400–9407
https://doi.org/10.1002/adma.201601819
53 K K Liu, Q Jiang, S Tadepalli, R Raliya, P Biswas, R R Naik, S Singamaneni. Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Applied Materials & Interfaces, 2017, 9(8): 7675–7681
https://doi.org/10.1021/acsami.7b01307
54 H Ren, M Tang, B Guan, K Wang, J Yang, F Wang, M Wang, J Shan, Z Chen, D Wei, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Advanced Materials, 2017, 29(38): 1702590
https://doi.org/10.1002/adma.201702590
55 Z Wang, Q Ye, X Liang, J Xu, C Chang, C Song, W Shang, J Wu, P Tao, T Deng. Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. Journal of Materials Chemistry. A, 2017, 5(31): 16359–16368
https://doi.org/10.1039/C7TA03262E
56 L Shi, Y Wang, L Zhang, P Wang. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. Journal of Materials Chemistry. A, 2017, 5(31): 16212–16219
https://doi.org/10.1039/C6TA09810J
57 G Wang, Y Fu, X Ma, W Pi, D Liu, X Wang. Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation. Carbon, 2017, 114: 117–124
https://doi.org/10.1016/j.carbon.2016.11.071
58 Y Zhang, D Zhao, F Yu, C Yang, J Lou, Y Liu, Y Chen, Z Wang, P Tao, W Shang, et al. Floating RGO-based black membranes for solar driven sterilization. Nanoscale, 2017, 9(48): 19384–19389
https://doi.org/10.1039/C7NR06861A
59 Y Liu, J Chen, D Guo, M Cao, L Jiang. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface. ACS Applied Materials & Interfaces, 2015, 7(24): 13645–13652
https://doi.org/10.1021/acsami.5b03435
60 Z Liu, H Song, D Ji, C Li, A Cheney, Y Liu, N Zhang, X Zeng, B Chen, J Gao, et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Global Chall, 2017, 1(2): 1600003
https://doi.org/10.1002/gch2.201600003
61 N Xu, X Hu, W Xu, X Li, L Zhou, S Zhu, J Zhu. Mushrooms as efficient solar steam-generation devices. Advanced Materials, 2017, 29(28): 1606762
https://doi.org/10.1002/adma.201606762
62 G Xue, K Liu, Q Chen, P Yang, J Li, T Ding, J Duan, B Qi, J Zhou. Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Applied Materials & Interfaces, 2017, 9(17): 15052–15057
https://doi.org/10.1021/acsami.7b01992
63 J Wang, Z Liu, X Dong, C E Hsiung, Y Zhu, L Liu, Y Han. Microporous cokes formed in zeolite catalysts enable efficient solar evaporation. Journal of Materials Chemistry. A, 2017, 5(15): 6860–6865
https://doi.org/10.1039/C7TA00882A
64 F Liu, B Zhao, W Wu, H Yang, Y Ning, Y Lai, R Bradley. Low cost, robust, environmentally friendly geopolymer-mesoporous carbon composites for efficient solar powered steam generation. Advanced Functional Materials, 2018, 28(47): 1803266
https://doi.org/10.1002/adfm.201803266
65 L Zhang, B Tang, J Wu, R Li, P Wang. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Advanced Materials, 2015, 27(33): 4889–4894
https://doi.org/10.1002/adma.201502362
66 X Wu, G Y Chen, W Zhang, X Liu, H Xu. A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Advanced Sustainable Systems, 2017, 1(6): 1700046
https://doi.org/10.1002/adsu.201700046
67 X Huang, Y H Yu, O L de Llergo, S M Marquez, Z Cheng. Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation. RSC Advances, 2017, 7(16): 9495–9499
https://doi.org/10.1039/C6RA26286D
68 F Zhao, X Zhou, Y Shi, X Qian, M Alexander, X Zhao, S Mendez, R Yang, L Qu, G Yu. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 2018, 13(6): 489–495
https://doi.org/10.1038/s41565-018-0097-z
69 Q Chen, Z Pei, Y Xu, Z Li, Y Yang, Y Wei, Y Ji. A durable monolithic polymer foam for efficient solar steam generation. Chemical Science (Cambridge), 2018, 9(3): 623–628
https://doi.org/10.1039/C7SC02967E
70 S I Nikitenko, T Chave, C Cau, H P Brau, V Flaud. Photothermal hydrogen production using noble-metal-free Ti@TiO2 core-shell nanoparticles under visible-NIR light irradiation. ACS Catalysis, 2015, 5(8): 4790–4795
https://doi.org/10.1021/acscatal.5b01401
71 Y Zhou, D E Doronkin, Z Zhao, P N Plessow, J Jelic, B Detlefs, T Pruessmann, F Studt, J D Grunwaldt. Photothermal catalysis over nonplasmonic Pt/TiO2 studied by operando hERFD-XANES, resonant XES, and DRIFTS. ACS Catalysis, 2018, 8(12): 11398–11406
https://doi.org/10.1021/acscatal.8b03724
72 Y Zhao, G I N Waterhouse, G Chen, X Xiong, L Z Wu, C H Tung, T Zhang. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48(7): 1972–2010
https://doi.org/10.1039/C8CS00607E
73 C Xu, W Huang, Z Li, B Deng, Y Zhang, M Ni, K Cen. Photothermal coupling factor achieving CO2 reduction based on palladium-nanoparticle-loaded TiO2. ACS Catalysis, 2018, 8(7): 6582–6593
https://doi.org/10.1021/acscatal.8b00272
74 R Li, L Zhang, L Shi, P Wang. Mxene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano, 2017, 11(4): 3752–3759
https://doi.org/10.1021/acsnano.6b08415
75 G Zhu, J Xu, W Zhao, F Huang. Constructing black titania with unique nanocage structure for solar desalination. ACS Applied Materials & Interfaces, 2016, 8(46): 31716–31721
https://doi.org/10.1021/acsami.6b11466
76 J Wang, Y Li, L Deng, N Wei, Y Weng, S Dong, D Qi, J Qiu, X Chen, T Wu. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Advanced Materials, 2017, 29(3): 1603730
https://doi.org/10.1002/adma.201603730
77 M Ye, J Jia, Z Wu, C Qian, R Chen, P G O’Brien, W Sun, Y Dong, G A Ozin. Synthesis of black tioxnanoparticles by mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Advanced Energy Materials, 2017, 7(4): 1601811
https://doi.org/10.1002/aenm.201601811
78 D Ding, W Huang, C Song, M Yan, C Guo, S Liu. Non-stoichiometric MoO3–x quantum dots as a light-harvesting material for interfacial water evaporation. Chemical Communications, 2017, 53(50): 6744–6747
https://doi.org/10.1039/C7CC01427A
79 X Hu, W Xu, L Zhou, Y Tan, Y Wang, S Zhu, J Zhu. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Advanced Materials, 2017, 29(5): 1604031
https://doi.org/10.1002/adma.201604031
80 B Sharma, M K Rabinal. Plasmon based metal-graphene nanocomposites for effective solar vaporization. Journal of Alloys and Compounds, 2017, 690: 57–62
https://doi.org/10.1016/j.jallcom.2016.07.330
81 Y Fu, T Mei, G Wang, A Guo, G Dai, S Wang, J Wang, J Li, X Wang. Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids. Applied Thermal Engineering, 2017, 114: 961–968
https://doi.org/10.1016/j.applthermaleng.2016.12.054
82 X Yang, Y Yang, L Fu, M Zou, Z Li, A Cao, Q Yuan. An ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation. Advanced Functional Materials, 2018, 28(3): 1704505
83 Y C Wang, C Z Wang, X J Song, S K Megarajan, H Q Jiang. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation. Journal of Materials Chemistry. A, 2018, 6(3): 963–971
https://doi.org/10.1039/C7TA08972D
84 Y Yang, X Yang, L Fu, M Zou, A Cao, Y Du, Q Yuan, C H Yan. Two-dimensional flexible bilayer janus membrane for advanced photothermal water desalination. ACS Energy Letters, 2018, 3(5): 1165–1171
https://doi.org/10.1021/acsenergylett.8b00433
85 R A Taylor, P E Phelan, R J Adrian, A Gunawan, T P Otanicar. Characterization of light-induced, volumetric steam generation in nanofluids. International Journal of Thermal Sciences, 2012, 56: 1–11
https://doi.org/10.1016/j.ijthermalsci.2012.01.012
86 A Lenert, E N Wang. Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Solar Energy, 2012, 86(1): 253–265
https://doi.org/10.1016/j.solener.2011.09.029
87 G Ni, N Miljkovic, H Ghasemi, X Huang, S V Boriskina, C T Lin, J Wang, Y Xu, M M Rahman, T Zhang, et al. Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy, 2015, 17: 290–301
https://doi.org/10.1016/j.nanoen.2015.08.021
88 Z Liu, Z Yang, X Huang, C Xuan, J Xie, H Fu, Q Wu, J Zhang, X Zhou, Y Liu. High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating. Journal of Materials Chemistry. A, 2017, 5(37): 20044–20052
https://doi.org/10.1039/C7TA06384A
89 J Lou, Y Liu, Z Wang, D Zhao, C Song, J Wu, N Dasgupta, W Zhang, D Zhang, P Tao, et al. Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS Applied Materials & Interfaces, 2016, 8(23): 14628–14636
https://doi.org/10.1021/acsami.6b04606
90 P Yang, K Liu, Q Chen, J Li, J Duan, G Xue, Z Xu, W Xie, J Zhou. Solar-driven simultaneous steam production and electricity generation from salinity. Energy & Environmental Science, 2017, 10(9): 1923–1927
https://doi.org/10.1039/C7EE01804E
91 C Chen, Y Li, J Song, Z Yang, Y Kuang, E Hitz, C Jia, A Gong, F Jiang, J Y Zhu, et al. Highly flexible and efficient solar steam generation device. Advanced Materials, 2017, 29(30): 1701756
https://doi.org/10.1002/adma.201701756
92 G Ni, G Li, V Boriskina S, H Li, W Yang, T Zhang, G Chen. Steam generation under one sun enabled by a floating structure with thermal concentration. Nature Energy, 2016, 1(9): 16126
https://doi.org/10.1038/nenergy.2016.126
93 M Zhu, Y Li, F Chen, X Zhu, J Dai, Y Li, Z Yang, X Yan, J Song, Y Wang, et al. Plasmonic wood for high-efficiency solar steam generation. Advanced Energy Materials, 2018, 8(4): 1701028
94 X Li, R Lin, G Ni, N Xu, X Hu, B Zhu, G Lv, J Li, S Zhu, J Zhu. Three-dimensional artificial transpiration for efficient solar waste-water treatment. National Science Review, 2018, 5(1): 70–77
https://doi.org/10.1093/nsr/nwx051
95 Y Wang, C Wang, X Song, M Huang, S K Megarajan, S F Shaukat, H Jiang. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones. Journal of Materials Chemistry. A, 2018, 6(21): 9874–9881
https://doi.org/10.1039/C8TA01469H
96 G Ni, S H Zandavi, S M Javid, S V Boriskina, T A Cooper, G Chen. A salt-rejecting floating solar still for low-cost desalination. Energy & Environmental Science, 2018, 11(6): 1510–1519
https://doi.org/10.1039/C8EE00220G
97 S Zhuang, L Zhou, W Xu, N Xu, X Hu, X Li, G Lv, Q Zheng, S Zhu, Z Wang, et al. Tuning transpiration by interfacial solar absorber-leaf engineering. Advancement of Science, 2018, 5(2): 1700497
98 M Morciano, M Fasano, U Salomov, L Ventola, E Chiavazzo, P Asinari. Efficient steam generation by inexpensive narrow gap evaporation device for solar applications. Scientific Reports, 2017, 7(1): 11970
https://doi.org/10.1038/s41598-017-12152-6
99 G Xue, Q Chen, S Lin, J Duan, P Yang, K Liu, J Li, J Zhou. Highly efficient water harvesting with optimized solar thermal membrane distillation device. Global Challenges, 2018, 2(5-6): 1800001
https://doi.org/10.1002/gch2.201800001
100 F M Canbazoglu, B Fan, A Kargar, K Vemuri, P R Bandaru. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment. AIP Advances, 2016, 6(8): 085218
https://doi.org/10.1063/1.4961945
101 Z Huang, X Li, H Yuan, Y Feng, X Zhang. Hydrophobically modified nanoparticle suspensions to enhance water evaporation rate. Applied Physics Letters, 2016, 109(16): 161602
https://doi.org/10.1063/1.4964830
102 Y Zeng, K Wang, J Yao, H Wang. Hollow carbon beads for significant water evaporation enhancement. Chemical Engineering Science, 2014, 116: 704–709
https://doi.org/10.1016/j.ces.2014.05.057
103 L Cui, P Zhang, Y Xiao, Y Liang, H Liang, Z Cheng, L Qu. High rate production of clean water based on the combined photo-electro-thermal effect of graphene architecture. Advanced Materials, 2018, 30(22): 1706805
https://doi.org/10.1002/adma.201706805
104 L Zhu, M Gao, C K N Peh, X Wang, G W Ho. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Advanced Energy Materials, 2018, 8(16): 1702149
https://doi.org/10.1002/aenm.201702149
105 P Wang. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science: Nano, 2018, 5(5): 1078–1089
https://doi.org/10.1039/C8EN00156A
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed