Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2019, Vol. 13 Issue (4): 672-683   https://doi.org/10.1007/s11705-019-1856-6
  本期目录
Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture
Sidra Rama1, Yan Zhang1, Fideline Tchuenbou-Magaia2, Yulong Ding1, Yongliang Li1()
1. School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B12 2TT, UK
2. School of Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
 全文: PDF(3513 KB)   HTML
Abstract

Carbon capture is widely recognised as an essential strategy to meet global goals for climate protection. Although various CO2 capture technologies including absorption, adsorption and membrane exist, they are not yet mature for post-combustion power plants mainly due to high energy penalty. Hence researchers are concentrating on developing non-aqueous solvents like ionic liquids, CO2-binding organic liquids, nanoparticle hybrid materials and microencapsulated sorbents to minimize the energy consumption for carbon capture. This research aims to develop a novel and efficient approach by encapsulating sorbents to capture CO2 in a cold environment. The conventional emulsion technique was selected for the microcapsule formulation by using 2-amino-2-methyl-1-propanol (AMP) as the core sorbent and silicon dioxide as the shell. This paper reports the findings on the formulated microcapsules including key formulation parameters, microstructure, size distribution and thermal cycling stability. Furthermore, the effects of microcapsule quality and absorption temperature on the CO2 loading capacity of the microcapsules were investigated using a self-developed pressure decay method. The preliminary results have shown that the AMP microcapsules are promising to replace conventional sorbents.

Key wordscarbon capture    microencapsulated sorbents    emulsion technique    low temperature adsorption and absorption
收稿日期: 2018-10-03      出版日期: 2019-12-04
Corresponding Author(s): Yongliang Li   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2019, 13(4): 672-683.
Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li. Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture. Front. Chem. Sci. Eng., 2019, 13(4): 672-683.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1856-6
https://academic.hep.com.cn/fcse/CN/Y2019/V13/I4/672
Fig.1  
Function Material Features
Core AMP Highest CO2 loading capacity, low regeneration temp
Shell TEOS Permeability to gas
Immiscible phase Mineral oil Immiscibility with core
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Sample BET surface area /(m2·g?1) Pore volume /(m2·g?1) Average pore size /Å
1 29 0.051 71
2 92 0.097 43
3 34 0.061 72
Tab.2  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
1 N Florin, P Fennell. Carbon capture technology: Future fossil fuel use and mitigating climate change. Grantham Institute Climate Change Brief Paper, 2010, 3(3): 20
2 W R L Anderegg, J W Prall, J Harold, S H Schneider. Expert credibility in climate change. Environmental Sciences, 2010, 107(27): 12107–12109
3 S I Plasynski, Z Y Chen. Review of CO2 capture technologies and some improvement opportunities. ACS Division of Fuel Chemistry. Preprints, 2000, 45: 644–649
4 J Zou, W S W Ho. CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol). Journal of Membrane Science, 2006, 286(1-2): 310–321
https://doi.org/10.1016/j.memsci.2006.10.013
5 M J Tuinier, H P Hamers, M Van Sint Annaland. Techno-economic evaluation of cryogenic CO2 capture: A comparison with absorption and membrane technology. International Journal of Greenhouse Gas Control, 2011, 5(6): 1559–1565
https://doi.org/10.1016/j.ijggc.2011.08.013
6 P Li, F H Tezel. Equilibrium and kinetic analysis of CO2-N2 adsorption separation by concentration pulse chromatography. Journal of Colloid and Interface Science, 2007, 313(1): 12–27
https://doi.org/10.1016/j.jcis.2007.04.015
7 M Li, X Jiang, G He. Application of membrane separation technology in postcombustion carbon dioxide capture process. Frontiers of Chemical Science and Engineering, 2014, 8(2): 233–239
https://doi.org/10.1007/s11705-014-1408-z
8 U Desideri. Advanced absorption processes and technology for carbon dioxide (CO2) capture in power plants. In: Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology. Woodhead Publishing Limited, 2010, 155–182
9 Z Dai, R D Noble, D L Gin, X Zhang, L Deng. Combination of ionic liquids with membrane technology: A new approach for CO2 separation. Journal of Membrane Science, 2016, 497: 1–20
https://doi.org/10.1016/j.memsci.2015.08.060
10 G X Liu. Greenhouse gases—capturing, utilization and reduction. InTechOpen, 2012: 1–24.
11 J J Vericella, S E Baker, J K Stolaroff, E B Duoss, J O Hardin, J Lewicki, E Glogowski, W C Floyd, C A Valdez, W L Smith, J H Satcher, W L Bourcier, C M Spadaccini, J A Lewis, R D Aines. Encapsulated liquid sorbents for carbon dioxide capture. Nature Communications, 2015, 6(1): 6124
https://doi.org/10.1038/ncomms7124
12 R M Davidson. Post-combustion carbon capture—solid sorbents and membranes. Energy Procedia, 2013, 37: 134–141
13 M Peanparkdee, S Iwamoto, R Yamauchi. Microencapsulation: A review of applications in the food and pharmaceutical industries. Reviews in Agricultural Science, 2016, 4(0): 56–65
https://doi.org/10.7831/ras.4.56
14 J K Stolaroff, C Ye, J S Oakdale, S E Baker, W L Smith, D T Nguyen, C M Spadaccini, R D Aines. Microencapsulation of advanced solvents for carbon capture. Faraday Discussions, 2016, 192(0): 271–281
https://doi.org/10.1039/C6FD00049E
15 S Jyothi Sri, A Seethadevi, K Suria Prabha, P Muthuprasanna, P Pavitra. Microencapsulation: A review. International Journal of Pharma and Bio Sciences, 2012, 3(1): 509–531
16 R K Shah, H C Shum, A C Rowat, D Lee, J J Agresti, A S Utada, L Y Chu, J W Kim, A Fernandez-Nieves, C J Martinez, D A Weitz. Designer emulsions using microfluidics. Materials Today, 2008, 11(4): 18–27
https://doi.org/10.1016/S1369-7021(08)70053-1
17 C J Nielsen, H Herrmann, C Weller. Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS). Chemical Society Reviews, 2012, 41(19): 66–84
https://doi.org/10.1039/c2cs35059a
18 B Shimekit, H Mukhtar. Natural gas purification technologies—major advances for CO2 separation and future firections. In: Advances in Natural Gas Technology. InTechOpen, 2012, 235–270
19 J F Harrod, R M Laine. Applications of organomettallic chemistry in the preparation and processing of advanced materials. Kluwer Academic Publishers, 1995, 3–25
20 P Innocenzi. The Sol to Gel Transition. Berlin: Springer, 2016, 7–25
21 S Bhakta, C K Dixit, I Bist, K A Jalil, S L Suib, J F Rusling. Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles. Materials Research Express, 2016, 3(7): 1–14
https://doi.org/10.1088/2053-1591/3/7/075025
22 C J Brinker. Hydrolysis and condensation of silicates: Effects on structure. Journal of Non-Crystalline Solids, 1988, 100(1-3): 31–50
https://doi.org/10.1016/0022-3093(88)90005-1
23 R Wang, H Li, W Liu, X He. Surface modification of poly(urea-formaldehyde) microcapsules and the effect on the epoxy composites performance. Pure and Applied Chemistry, 2010, 47(10): 991–995
24 A B Kuriokase, S Padma, S Padma Priya. A Review on microcapsules. Global Journal of Pharmacology, 2015, 9(1): 28–39
25 P J Tarcha. Polymers for Controlled Drug Delivery. Florida: CRC Press, 1991: 286
26 S Lowell, J E Shields, M A Thomas, M Thommes. Characterisation of Porous Solids and Powders: Surface Area, Pore Size and Density. Berlin: Springer, 2004, 58–81
27 J Vysloužil, P Doležel, M Kejdušová, E Mašková, J Mašek, R Lukáč, V Košťál, D Vetchý, K Dvořáčková. Influence of different formulations and process parameters during the preparation of drug-loaded PLGA microspheres evaluated by multivariate data analysis. Acta Pharmaceutica (Zagreb, Croatia), 2014, 64(4): 403–417
https://doi.org/10.2478/acph-2014-0032
28 S Tamilvanan, B Sa. Effect of production variables on the physical characteristics of ibuprofen-loaded polystyrene microparticles. Journal of Microencapsulation, 1999, 16(4): 411–418
https://doi.org/10.1080/026520499288870
29 C Chan, Y Maham, A E Mather, C Mathonat. Densities and volumetric properties of the aqueous solutions of 2-amino-2-methyl-1-propanol, n-butyldiethanolamine and n-propylethanolamine at temperature from 298.15 to 353.15 K. Fluid Phase Equilibria, 2002, 198(2): 239–250
https://doi.org/10.1016/S0378-3812(01)00768-3
30 T G Majury. Amines and carboxylic acids as initiators of polymerization in caprolactam. Journal of Polymer Science. Polymer Physics Edition, 1958, 31(123): 383–397
31 W N R Wan Isahak, Z A Che Ramli, M W Mohamed Hisham, M A Yarmo. The formation of a series of carbonates from carbon dioxide: Capturing and utilisation. Renewable & Sustainable Energy Reviews, 2015, 47: 93–106
https://doi.org/10.1016/j.rser.2015.03.020
32 P S Nair, P P Selvi. Absorption of carbon dioxide in packed column. International Journal of Science Research Publication, 2014, 4(1): 2250–3153
33 J J Vericella, S E Baker, J K Stolaroff, E B Duoss, J O Hardin, J Lewicki, E Glogowski, W C Floyd, C A Valdez, W L Smith, et al.. Encapsulated liquid sorbents for carbon dioxide capture. Nature Communications, 2015, 6(1): 6124
https://doi.org/10.1038/ncomms7124
34 R D Aines, C M Spaddaccini, E B Duoss, J K Stolaroff, J Vericella, J A Lewis, G Farthing. Encapsulated solvents for carbon dioxide capture. Energy Procedia, 2013, 37: 219–224
https://doi.org/10.1016/j.egypro.2013.05.105
35 J C Stephens, B Van Der Zwaan, J F Kennedy. CO2 capture and storage (CCS): Exploring the research, development, demonstration, and deployment continuum. Energy Technology Innovation Project. Harvard University, 2005, 3–20
36 S B Fredriksen, K J Jens. Oxidative degradation of aqueous amine solutions of MEA, AMP, MDEA, Pz: A review. Energy Procedia, 2013, 37: 1770–1777
https://doi.org/10.1016/j.egypro.2013.06.053
37 B P Nicholas, Y Lu. CO2 absorption into concentraed carbonate solutions with promoters at elevated temperatures. Dissertation for the Master’s Degree. Illinois: University of Illinois, 2014: 3–10
38 T B R Haslam, R L Hershey, R H Keen. Industrial and engineering chemistry. Effect of gas velocity and temperature on rate of absorption. UTC, 2018, 18: 41
39 T Wang, K J Jens. Oxidative degradation of AMP/MEA blends for post-combustion CO2 capture. Energy Procedia, 2013, 37: 306–313
https://doi.org/10.1016/j.egypro.2013.05.116
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed