Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (3): 317-349   https://doi.org/10.1007/s11705-019-1874-4
  本期目录
Easy access to pharmaceutically relevant heterocycles by catalytic reactions involving α-imino gold carbene intermediates
Ximei Zhao1, Matthias Rudolph1, Abdullah M. Asiri2, A. Stephen K. Hashmi1,2()
1. Organisch-Chemisches Institut, Heidelberg University, 69120 Heidelberg, Germany
2. Chemistry Department, Faculty of Science, 21589 Jeddah, Saudi Arabia
 全文: PDF(4806 KB)   HTML
Abstract

This review summarizes recent advances in the field of gold-catalyzed synthesis of pharmaceutically relevant aza-heterocycles via in situ generated α-imino gold carbene complexes as intermediates.

Key wordsgold    heterocycles    alkynes
收稿日期: 2019-04-11      出版日期: 2020-04-28
Corresponding Author(s): A. Stephen K. Hashmi   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(3): 317-349.
Ximei Zhao, Matthias Rudolph, Abdullah M. Asiri, A. Stephen K. Hashmi. Easy access to pharmaceutically relevant heterocycles by catalytic reactions involving α-imino gold carbene intermediates. Front. Chem. Sci. Eng., 2020, 14(3): 317-349.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1874-4
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I3/317
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
Fig.24  
Fig.25  
Fig.26  
Fig.27  
Fig.28  
Fig.29  
Fig.30  
Fig.31  
Fig.32  
Fig.33  
Fig.34  
Fig.35  
Fig.36  
Fig.37  
Fig.38  
Fig.39  
Fig.40  
Fig.41  
Fig.42  
Fig.43  
Fig.44  
Fig.45  
Fig.46  
Fig.47  
Fig.48  
Fig.49  
Fig.50  
Fig.51  
Fig.52  
Fig.53  
Fig.54  
Fig.55  
Fig.56  
Fig.57  
Fig.58  
Fig.59  
Fig.60  
Fig.61  
Fig.62  
Fig.63  
Fig.64  
Fig.65  
Fig.66  
Fig.67  
Fig.68  
Fig.69  
Fig.70  
Fig.71  
Fig.72  
Fig.73  
Fig.74  
Fig.75  
Fig.76  
1 A S K Hashmi, T M Frost, J W Bats. Highly selective gold-catalyzed arene synthesis. Journal of the American Chemical Society, 2000, 122(46): 11553–11554
https://doi.org/10.1021/ja005570d
2 A S K Hashmi, L Schwarz, J H Choi, T M Frost. A new gold-catalyzed C‒C bond formation. Angewandte Chemie International Edition in English, 2000, 39(13): 2285–2288 doi:10.1002/1521-3773(20000703)39:13<2285::AID-ANIE2285>3.0.CO;2-F
3 M M Hann, A R Leach, G Harper. Molecular complexity and its impact on the probability of finding leads for drug discovery. Journal of Chemical Information and Computer Sciences, 2001, 41(3): 856–864
https://doi.org/10.1021/ci000403i
4 A Fürstner. Gold and platinum catalysis—a convenient tool for generating molecular complexity. Chemical Society Reviews, 2009, 38(11): 3208–3221
https://doi.org/10.1039/b816696j
5 D Pflästerer , A S K Hashmi. Gold catalysis in total synthesis-recent achievements. Chemical Society Reviews, 2016, 45(5): 1331–1367
https://doi.org/10.1039/C5CS00721F
6 A M Asiri, A S K Hashmi. Gold-catalysed reactions of diynes. Chemical Society Reviews, 2016, 45(16): 4471–4503
https://doi.org/10.1039/C6CS00023A
7 A S K Hashmi, T M Frost, J W Bats. Gold catalysis: On the phenol synthesis. Organic Letters, 2001, 3(23): 3769–3771
https://doi.org/10.1021/ol016734d
8 M T Reetz, K Sommer. Gold-catalyzed hydroarylation of alkynes. European Journal of Organic Chemistry, 2003, 2003(18): 3485–3496
https://doi.org/10.1002/ejoc.200300260
9 G Dyker, E Muth, A S K Hashmi, L Ding. Gold(III) chloride-catalyzed addition reactions of electron-rich arenes to methyl vinyl ketone. Advanced Synthesis & Catalysis, 2003, 345(11): 1247–1252
https://doi.org/10.1002/adsc.200303098
10 C Nevado, A M Echavarren. Intramolecular hydroarylation of alkynes catalyzed by platinum or gold: Mechanism and endo selectivity. Chemistry (Weinheim an der Bergstrasse, Germany), 2005, 11(10): 3155–3164
https://doi.org/10.1002/chem.200401069
11 A Buzas, F Gagosz. Gold(I)-catalyzed formation of 4-alkylidene-1,3-dioxolan-2-ones from propargylic tert-butyl carbonates. Organic Letters, 2006, 8(3): 515–518
https://doi.org/10.1021/ol053100o
12 F Gagosz. Unusual gold(I)-catalyzed isomerization of 3-hydroxylated 1,5-enynes: Highly substrate-dependent reaction manifolds. Organic Letters, 2005, 7(19): 4129–4132
https://doi.org/10.1021/ol051397k
13 G Revol, T McCallum, M Morin, F Gagosz, L Barriault. Photoredox transformations with dimeric gold complexes. Angewandte Chemie International Edition in English, 2013, 52(50): 13342–13345
https://doi.org/10.1002/anie.201306727
14 J Xie, T Zhang, F Chen, N Mehrkens, F Rominger, M Rudolph, A S K Hashmi. Gold-catalyzed highly selective photoredox C (sp2)-H difluoroalkylation and perfluoroalkylation of hydrazones. Angewandte Chemie International Edition in English, 2016, 55(8): 2934–2938
https://doi.org/10.1002/anie.201508622
15 L Huang, M Rudolph, F Rominger, A S K Hashmi. Photosensitizer-free visible light-mediated gold-catalyzed 1,2-difunctionalization of alkynes. Angewandte Chemie International Edition in English, 2016, 55(15): 4808–4813
https://doi.org/10.1002/anie.201511487
16 L Huang, F Rominger, M Rudolph, A S K Hashmi. A general access to organogold(III) complexes by oxidative addition of diazonium salts. Chemical Communications, 2016, 52(38): 6435–6438
https://doi.org/10.1039/C6CC02199A
17 J Xie, K Sekine, S Witzel, P Kramer, M Rudolph, F Rominger, A S K Hashmi. Light-induced gold-catalyzed hiyama arylation: A coupling access to biarylboronates. Angewandte Chemie International Edition in English, 2018, 57(51): 16648–16653
https://doi.org/10.1002/anie.201806427
18 S Witzel, K Sekine, M Rudolph, A S K Hashmi. New transmetalation reagents for the gold-catalyzed visible light-enabled C(sp or sp2)-C(sp2) cross-coupling with aryldiazonium salts in the absence of a photosensitizer. Chemical Communications, 2018, 54(98): 13802–13804
https://doi.org/10.1039/C8CC08227H
19 S Witzel, J Xie, M Rudolph, A S K Hashmi. Photosensitizer-free, gold-catalyzed C‒C cross-coupling of boronic acids and diazonium salts enabled by visible light. Advanced Synthesis & Catalysis, 2017, 359(9): 1522–1528
https://doi.org/10.1002/adsc.201700121
20 J Xie, S Shi, T Zhang, N Mehrkens, M Rudolph, A S K Hashmi. A highly efficient gold-catalyzed photoredox α-C(sp3)-H alkynylation of tertiary aliphatic amines with sunlight. Angewandte Chemie International Edition in English, 2015, 54(20): 6046–6050
https://doi.org/10.1002/anie.201412399
21 I Braun, A M Asiri, A S K Hashmi. Gold catalysis 2.0. ACS Catalysis, 2013, 3(8): 1902–1907
https://doi.org/10.1021/cs400437s
22 J F Greisch, P Weis, K Brendle, M M Kappes, J R N Haler, J Far, E De Pauw, C Albers, S Bay, T Wurm, et al. Detection of intermediates in dual gold catalysis using high-resolution ion mobility mass spectrometry. Organometallics, 2018, 37(9): 1493–1500
https://doi.org/10.1021/acs.organomet.8b00128
23 A S K Hashmi, I Braun, M Rudolph, F Rominger. The role of gold acetylides as a selectivity trigger and the importance of gem-diaurated species in the gold-catalyzed hydroarylating-aromatization of arene-diynes. Organometallics, 2012, 31(2): 644–661
https://doi.org/10.1021/om200946m
24 A S K Hashmi. Dual gold catalysis. Accounts of Chemical Research, 2014, 47(3): 864–876
https://doi.org/10.1021/ar500015k
25 A J Plajer, L Ahrens, M Wieteck, D M Lustosa, R Babaahmadi, B Yates, A Ariafard, M Rudolph, F Rominger, A S K Hashmi. Different selectivities in the insertions into C(sp2)-H bonds: Benzofulvenes by dual gold catalysis competition experiments. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24(42): 10766–10772
https://doi.org/10.1002/chem.201801031
26 L Liu, B Xu, M S Mashuta, G B Hammond. Synthesis and structural characterization of stable organogold(I) compounds. Evidence for the mechanism of gold-catalyzed cyclizations. Journal of the American Chemical Society, 2008, 130(52): 17642–17643
https://doi.org/10.1021/ja806685j
27 D Weber, M A Tarselli, M R Gagne. Mechanistic surprises in the gold(I)-catalyzed intramolecular hydroarylation of allenes. Angewandte Chemie International Edition in English, 2009, 48(31): 5733–5736
https://doi.org/10.1002/anie.200902049
28 A S K Hashmi, A M Schuster, F Rominger. Gold catalysis: Isolation of vinylgold complexes derived from alkynes. Angewandte Chemie International Edition in English, 2009, 48(44): 8247–8249
https://doi.org/10.1002/anie.200903134
29 L Nunes Dos Santos Comprido, J Klein, G Knizia, J Kastner, A S K Hashmi. On the accessible reaction channels of vinyl gold(I) species: π- and σ-pathways. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(45): 10901–10905
https://doi.org/10.1002/chem.201702023
30 A S K Hashmi. Isolable vinylgold intermediates—first access to phantoms of homogeneous gold catalysis. Gold Bulletin, 2009, 42(4): 275–279
https://doi.org/10.1007/BF03214949
31 M R Fructos, T R Belderrain, P de Frémont, N M Scott, S P Nolan, M M Díaz-Requejo, P J Pérez. A Gold catalyst for carbene—transfer reactions from ethyl diazoacetate. Angewandte Chemie International Edition in English, 2005, 44(33): 5284–5288
https://doi.org/10.1002/anie.200501056
32 A Fürstner, L Morency. On the nature of the reactive intermediates in gold-catalyzed cycloisomerization reactions. Angewandte Chemie International Edition in English, 2008, 47(27): 5030–5033
https://doi.org/10.1002/anie.200800934
33 M J Johansson, D J Gorin, S T Staben, F D Toste. Gold(I)-catalyzed stereoselective olefin cyclopropanation. Journal of the American Chemical Society, 2005, 127(51): 18002–18003
https://doi.org/10.1021/ja0552500
34 Y Xia, A S Dudnik, V Gevorgyan, Y Li. Mechanistic insights into the gold-catalyzed cycloisomerization of bromoallenyl ketones: Ligand-controlled regioselectivity. Journal of the American Chemical Society, 2008, 130(22): 6940–6941
https://doi.org/10.1021/ja802144t
35 J E Klein, G Knizia, L Nunes dos Santos Comprido, J Kästner, A S K C Hashmi. (sp3)-H bond activation by vinylidene gold(I) complexes: A concerted asynchronous or stepwise process? Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(63): 16097–16103
https://doi.org/10.1002/chem.201703815
36 L Nunes dos Santos Comprido, J E Klein, G Knizia, J Kastner, A S K Hashmi. The stabilizing effects in gold carbene complexes. Angewandte Chemie International Edition in English, 2015, 54(35): 10336–10340
https://doi.org/10.1002/anie.201412401
37 A Fürstner, P Hannen. Carene terpenoids by gold-catalyzed cycloisomerization reactions. Chemical Communications, 2004, 22: 2546–2547
https://doi.org/10.1039/B412354A
38 A Fürstner , P Hannen. Platinum- and gold-catalyzed rearrangement reactions of propargyl acetates: Total syntheses of (-)-α-cubebene, (-)-cubebol, sesquicarene and related terpenes. Chemistry (Weinheim an der Bergstrasse, Germany), 2006, 12(11): 3006–3019
https://doi.org/10.1002/chem.200501299
39 Y Wang, Z Zheng, L Zhang. Intramolecular insertions into unactivated C(sp3)-H bonds by oxidatively generated β-diketone-α-gold carbenes: Synthesis of cyclopentanones. Journal of the American Chemical Society, 2015, 137(16): 5316–5319
https://doi.org/10.1021/jacs.5b02280
40 J Li, K Ji, R Zheng, J Nelson, L Zhang. Expanding the horizon of intermolecular trapping of in situ generated α-oxo gold carbenes: Efficient oxidative union of allylic sulfides and terminal alkynes via C‒C bond formation. Chemical Communications, 2014, 50(31): 4130–4133
https://doi.org/10.1039/C4CC00739E
41 C Shu, L Li, X Xiao, Y Yu, Y Ping, J Zhou, L Ye. Flexible and practical synthesis of 3-oxyindoles through gold-catalyzed intermolecular oxidation of o-ethynylanilines. Chemical Communications, 2014, 50(63): 8689–8692
https://doi.org/10.1039/C4CC03565H
42 D J Gorin, N R Davis, F D Toste. Gold(I)-catalyzed intramolecular acetylenic Schmidt reaction. Journal of the American Chemical Society, 2005, 127(32): 11260–11261
https://doi.org/10.1021/ja053804t
43 C A Witham, P Mauleón, N D Shapiro, B D Sherry, F D Toste. Gold(I)-catalyzed oxidative rearrangements. Journal of the American Chemical Society, 2007, 129(18): 5838–5839
https://doi.org/10.1021/ja071231+
44 B Lu, Y Luo, L Liu, L Ye, Y Wang, L Zhang. Umpolung reactivity of indole through gold catalysis. Angewandte Chemie International Edition in English, 2011, 50(36): 8358–8362
https://doi.org/10.1002/anie.201103014
45 A Wetzel, F Gagosz. Gold-catalyzed transformation of 2-alkynyl arylazides: Efficient eccess to the valuable pseudoindoxyl and indolyl frameworks. Angewandte Chemie International Edition in English, 2011, 123(32): 7492–7496
46 N Li, T Wang, L Gong, L Zhang. Gold-catalyzed multiple cascade reaction of 2-alkynylphenylazides with propargyl alcohols. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(9): 3585–3588
https://doi.org/10.1002/chem.201406456
47 Y Tokimizu, S Oishi, N Fujii, H Ohno. Gold-catalyzed cascade cyclization of (azido)ynamides: An efficient strategy for the construction of indoloquinolines. Organic Letters, 2014, 16(11): 3138–3141
https://doi.org/10.1021/ol5012604
48 C Shen, Y Pan, Y Yu, Z Wang, W He, T Li, L Ye. Facile and efficient synthesis of [1,4]oxazino[3,2-b]indoles and 1H-pyrazino[2,3-b]indoles through gold-catalyzed cascade cyclization of (azido)ynamides. Journal of Organometallic Chemistry, 2015, 795: 63–67
https://doi.org/10.1016/j.jorganchem.2015.01.029
49 Y Pan, G Chen, C Shen, W He, L Ye. Synthesis of fused isoquinolines via gold-catalyzed tandem alkyne amination/intramolecular O–H insertion. Organic Chemistry Frontiers: An International Journal of Organic Chemistry/Royal Society of Chemistry, 2016, 3(4): 491–495
https://doi.org/10.1039/C6QO00033A
50 Y Xiao, L Zhang. Synthesis of bicyclic imidazoles via [2+3] cycloaddition between nitriles and regioselectively generated α-Imino gold carbene intermediates. Organic Letters, 2012, 14(17): 4662–4665
https://doi.org/10.1021/ol302102h
51 Z Y Yan, Y Xiao, L Zhang. Gold-catalyzed one-step construction of 2,3-dihydro-1H-Pyrrolizines with an electron-withdrawing group in the 5-position: A formal synthesis of 7-methoxymitosene. Angewandte Chemie International Edition in English, 2012, 51(34): 8624–8627
https://doi.org/10.1002/anie.201203678
52 S Zhu, L Wu, X Huang. Gold-catalyzed cyclization of 3-(2′-azidoaryl)-1-arylpropargyl carbonates or 3-aryl-1-(2′-azidoaryl)propargyl carbonates to produce quinolines. Journal of Organic Chemistry, 2013, 78(18): 9120–9126 doi:10.1021/jo401324k
53 N S Y Loy, S Choi, S Kim, C Park. The synthesis of pyrroles and oxazoles based on gold α-imino carbene complexes. Chemical Communications, 2016, 52(46): 7336–7339
https://doi.org/10.1039/C6CC01742H
54 A Prechter, G Henrion, P Faudot dit Bel, F Gagosz. Gold-catalyzed synthesis of functionalized pyridines by using 2H-azirines as synthetic equivalents of alkenyl nitrenes. Angewandte Chemie International Edition in English, 2014, 53(19): 4959–4963
https://doi.org/10.1002/anie.201402470
55 C Shu, Y H Wang, B Zhou, X L Li, Y F Ping, X Lu, L Ye. Generation of α-Imino gold carbenes through gold-catalyzed intermolecular reaction of azides with ynamides. Journal of the American Chemical Society, 2015, 137(30): 9567–9570
https://doi.org/10.1021/jacs.5b06015
56 P W Davies, A Cremonesi, L Dumitrescu. Intermolecular and selective synthesis of 2,4,5-trisubstituted oxazoles by a gold-catalyzed formal [3+2] cycloaddition. Angewandte Chemie International Edition in English, 2011, 50(38): 8931–8935
https://doi.org/10.1002/anie.201103563
57 R J Reddy, M P Ball-Jones, P W Davies. Alkynyl thioethers in gold-catalyzed annulations to form oxazoles. Angewandte Chemie International Edition in English, 2017, 56(43): 13310–13313
https://doi.org/10.1002/anie.201706850
58 C Li, L Zhang. Gold-catalyzed nitrene transfer to activated alkynes: Formation of α, β-unsaturated amidines. Organic Letters, 2011, 13(7): 1738–1741
https://doi.org/10.1021/ol2002607
59 J González, J Santamaría, Á L Suárez-Sobrino, A Ballesteros. One-pot and regioselective gold-catalyzed synthesis of 2-imidazolyl-1-pyrazolylbenzenes from 1-propargyl-1H-benzotriazoles, alkynes and nitriles through α-imino gold(I) carbene complexes. Advanced Synthesis & Catalysis, 2016, 358(9): 1398–1403
https://doi.org/10.1002/adsc.201600022
60 L Zhu, Y Yu, Z Mao, X Huang. Gold-catalyzed intermolecular nitrene transfer from 2H-azirines to ynamides: A direct approach to polysubstituted pyrroles. Organic Letters, 2015, 17(1): 30–33
https://doi.org/10.1021/ol503172h
61 A Zhou, Q He, C Shu, Y Yu, S Liu, T Zhao, W Zhang, X Lu, L Ye. Atom-economic generation of gold carbenes: Gold-catalyzed formal [3+2] cycloaddition between ynamides and isoxazoles. Chemical Science (Cambridge), 2015, 6(2): 1265–1271
https://doi.org/10.1039/C4SC02596B
62 R Sahani, R S Liu. Development of gold-catalyzed [4+1] and [2+2+1]/[4+2] annulations between propiolate derivatives and isoxazoles. Angewandte Chemie International Edition in English, 2017, 56(4): 1026–1030
https://doi.org/10.1002/anie.201610665
63 R D Kardile, B S Kale, P Sharma, R Liu. Gold-catalyzed [4+1]-annulation reactions between 1,4-diyn-3-ols and isoxazoles to construct a pyrrole core. Organic Letters, 2018, 20(13): 3806–3809
https://doi.org/10.1021/acs.orglett.8b01398
64 M Chen, N Sun, H Chen, Y Liu. Dioxazoles, a new mild nitrene transfer reagent in gold catalysis: Highly efficient synthesis of functionalized oxazoles. Chemical Communications, 2016, 52(37): 6324–6327
https://doi.org/10.1039/C6CC02776H
65 Z Zeng, H Jin, J Xie, B Tian, M Rudolph, F Rominger, A S K Hashmi. α-Imino gold carbenes from 1,2,4-oxadiazoles: Atom-economical access to fully substituted 4-aminoimidazoles. Organic Letters, 2017, 19(5): 1020–1023
https://doi.org/10.1021/acs.orglett.7b00001
66 W Xu, G Wang, N Sun, Y Liu. Gold-catalyzed formal [3+2] cycloaddition of ynamides with 4,5-dihydro-1,2,4-oxadiazoles: Synthesis of functionalized 4-aminoimidazoles. Organic Letters, 2017, 19(12): 3307–3310
https://doi.org/10.1021/acs.orglett.7b01469
67 H Jin, L Huang, J Xie, M Rudolph, F Rominger, A S K Hashmi. Gold-catalyzed C‒H annulation of anthranils with alkynes: A facile, flexible, and atom-economical synthesis of unprotected 7-acylindoles. Angewandte Chemie International Edition in English, 2016, 55(2): 794–797
https://doi.org/10.1002/anie.201508309
68 Z Zeng, H Jin, K Sekine, M Rudolph, F Rominger, A S K Hashmi. Gold-catalyzed regiospecific C‒H annulation of o-ethynylbiaryls with anthranils: p-Extension by ring-expansion en route to N-doped PAHs. Angewandte Chemie International Edition in English, 2018, 57(23): 6935–6939
https://doi.org/10.1002/anie.201802445
69 X Tian, L Song, K Farshadfar, M Rudolph, F Rominger, T Oeser, A S K Hashmi. Acyl migrations versus epoxidations in gold catalyis: Facile, switchable and atom-economic synthesis of acylindoles and quinoline derivatives. Angewandte Chemie International Edition in English, 2019, in press, DOI: 10.1002/ anie.201912334
70 H Jin, B Tian, X Song, J Xie, M Rudolph, F Rominger, A S K Hashmi. Gold-catalyzed synthesis of quinolines from propargyl silyl ethers and anthranils through the umpolung of a gold carbene carbon. Angewandte Chemie International Edition in English, 2016, 55(41): 12688–12692
https://doi.org/10.1002/anie.201606043
71 M H Tsai, C Wang, A S Kulandai Raj, R Liu. Gold-catalyzed annulations of N-aryl ynamides with benzisoxazoles to construct 6H-indolo[2,3-b]quinoline cores. Chemical Communications, 2018, 54(77): 10866–10869
https://doi.org/10.1039/C8CC04264K
72 M D Patil, R Liu. Direct access to benzofuro[2,3-b]quinoline and 6H-chromeno[3,4-b] quinoline cores through gold-catalyzed annulation of anthranils with arenoxyethynes and aryl propargyl ethers. Organic & Biomolecular Chemistry, 2019, 17(18): 4452–4455
https://doi.org/10.1039/C9OB00468H
73 Z Zeng, H Jin, M Rudolph, F Rominger, A S K Hashmi. Gold(III)-catalyzed site-selective and divergent synthesis of 2-aminopyrroles and quinoline-based polyazaheterocycles. Angewandte Chemie International Edition in English, 2018, 57(50): 16549–16553
https://doi.org/10.1002/anie.201810369
74 H C Hsieh, K C Tan, A S Kulandai Raj, R S Liu. Gold-catalyzed [4+1]-annulation reactions between anthranils and 4-methoxy-1,2-dienyl-5-ynes involving a 1,2-allene shift. Chemical Communications, 2019, 55(13): 1979–1982
https://doi.org/10.1039/C8CC09082C
75 P D Jadhav, X Lu, R Liu. Gold-catalyzed [5+2]- and [5+1]-annulations between ynamides and 1,2-benzisoxazoles with ligand-controlled chemoselectivity. ACS Catalysis, 2018, 8(10): 9697–9701
https://doi.org/10.1021/acscatal.8b03011
76 W Xu, J Zhao, X Li, Y Liu. Selective [5+1] and [5+2] cycloaddition of ynamides or propargyl esters with benzo[d]isoxazoles via gold catalysis. Journal of Organic Chemistry, 2018, 83(24): 15470–15485
https://doi.org/10.1021/acs.joc.8b02935
77 Y Yu, G Chen, L Zhu, Y Liao, Y Wu, X Huang. Gold-catalyzed bregioselective formal [3+2] cycloaddition of ynamides with pyrido[1,2-b]indazoles: Reaction development and mechanistic insights. Journal of Organic Chemistry, 2016, 81(18): 8142–8154
https://doi.org/10.1021/acs.joc.6b01948
78 X Tian, L Song, M Rudolph, F Rominger, T Oeser, A S K Hashmi. Sulfilimines as versatile nitrene transfer reagents: Facile access to diverse aza-heterocycles. Angewandte Chemie International Edition in English, 2019, 58(11): 3589–3593
https://doi.org/10.1002/anie.201812002
79 X Tian, L Song, M Rudolph, Q Wang, X Song, F Rominger, A S K Hashmi. N-pyridinyl sulfilimines as a source for α-imino gold carbenes: Access to 2-amino-substituted N-fused imidazoles. Organic Letters, 2019, 21(6): 1598–1601
https://doi.org/10.1021/acs.orglett.9b00140
80 X Tian, L Song, C Han, C Zhang, Y Wu, M Rudolph, F Rominger, A S K Hashmi. Gold(III)-catalyzed formal [3+2] annulations of N-acyl sulfilimines with ynamides for the synthesis of 4-aminooxazoles. Organic Letters, 2019, 21(8): 2937–2940
https://doi.org/10.1021/acs.orglett.9b01011
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed