The creation of intergrown layer-like zeolite crystals is one route to form hierarchical zeolites. Faujasite-type (FAU-type) zeolites are among the industrially most important zeolites and the implementation of hierarchical porosity is a promising way to optimise their catalytic and adsorptive performance. After a short general survey into routes for the preparation of hierarchical pore systems in FAU, we will review the currently existing strategies for the synthesis of FAU with layer-like morphology. Those strategies are mainly based on the presence of morphology modifying agents in the synthesis mixture. However, a very recent approach is the synthesis of layer-like FAU-type zeolite crystals assembled in an intergrown manner in the absence of such additives, just by finely adjusting the crystallization temperature. This additive-free preparation route for layer-like FAU, which appears very attractive from an ecological as well as economic point of view, is highlighted in this review. Concluding, a comparison, including powder X-ray diffraction, scanning and transmission electron microscopy, nitrogen physisorption and elemental analysis, between conventional FAU and three layer-like FAU obtained by different synthesis routes was carried out to show the structural, morphological and textural differences and similarities of these materials.
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(2): 127-142.
Bastian Reiprich, Tobias Weissenberger, Wilhelm Schwieger, Alexandra Inayat. Layer-like FAU-type zeolites: A comparative view on different preparation routes. Front. Chem. Sci. Eng., 2020, 14(2): 127-142.
W Vermeiren, J P Gilson. Impact of zeolites on the petroleum and petrochemical industry. Topics in Catalysis, 2009, 52(9): 1131–1161 https://doi.org/10.1007/s11244-009-9271-8
2
D Bathen, M Breitbach. Technische Adsorbentien. In: Adsorptionstechnik. Berlin: Springer International Publishing, 2001, 13–48
3
D W Mckee. Separation of an oxygen-nitrogen mixture. US Patent, 3 140 932, 1964-07-14
4
C V McDaniel, P K Maher. Stabilized zeolites. US Patent, 3 449 070, 1969-06-10
5
R W Baker, F G Ciapetta, C P Wilson Jr, P K Maher. Process for preparing molecular sieve containing cracking catalysts. US Patent, 3 425 956, 1969-02-04
6
R M Dobres. Hydrocracking catalyst and process. US Patent, 3 431 196, 1969-03-04
7
F H Seubold. Hydrocracking process and catalyst. US Patent, 2 983 670, 1961-05-09
8
R M Milton. Molecular sieve adsorbents. US Patent, 2 882 244, 1959-04-14
9
D W Breck. Crystalline zeolite Y. US Patent, 3 130 007, 1964-04-21
S M Auerbach, N J Henson, A K Cheetham, H I Metiu. Transport theory for cationic zeolites: Diffusion of benzene in Na-Y. Journal of Physical Chemistry, 1995, 99(26): 10600–10608 https://doi.org/10.1021/j100026a025
13
A Corma. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chemical Reviews, 1995, 95(3): 559–614 https://doi.org/10.1021/cr00035a006
14
M F M Post. Diffusion in zeolite molecular sieves. In: Studies in Surface Science and Catalysis. 58th ed. Amsterdam: Elsevier, 1991, 391–443
15
D Mehlhorn, A Inayat, W Schwieger, R Valiullin, J Kärger. Probing mass transfer in mesoporous Faujasite-type zeolite nanosheet assemblies. ChemPhysChem, 2014, 15(8): 1681–1686 https://doi.org/10.1002/cphc.201301133
16
D Mehlhorn, R Valiullin, J Kärger, K Cho, R Ryoo. Intracrystalline diffusion in mesoporous zeolites. ChemPhysChem, 2012, 13(6): 1495–1499 https://doi.org/10.1002/cphc.201200048
17
C H Christensen, K Johannsen, E Toernqvist, I Schmidt, H Topsøe, C H Christensen. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catalysis Today, 2007, 128(3-4): 117–122 https://doi.org/10.1016/j.cattod.2007.06.082
18
J C Groen, W Zhu, S Brouwer, S J Huynink, F Kapteijn, J A Moulijn, J Pérez-Ramírez. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. Journal of the American Chemical Society, 2007, 129(2): 355–360 https://doi.org/10.1021/ja065737o
19
J Kärger, R Valiullin. Mass transfer in mesoporous materials: The benefit of microscopic diffusion measurement. Chemical Society Reviews, 2013, 42(9): 4172–4197 https://doi.org/10.1039/c3cs35326e
20
D Verboekend, N Nuttens, R Locus, J Van Aelst, P Verolme, J Groen, J Pérez-Ramírez, B Sels. Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: Milestones, challenges, and future directions. Chemical Society Reviews, 2016, 45(12): 3331–3352 https://doi.org/10.1039/C5CS00520E
21
B-L Su, C Sanchez, X-Y Yang. Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2012, 1–678
22
D Verboekend, G Vilé, J Pérez-Ramírez. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Advanced Functional Materials, 2012, 22(5): 916–928 https://doi.org/10.1002/adfm.201102411
23
D Verboekend, J Pérez-Ramírez. Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 2011, 1(6): 879–890 https://doi.org/10.1039/c1cy00150g
24
W Schwieger, A G Machoke, T Weissenberger, A Inayat, T Selvam, M Klumpp, A Inayat. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chemical Society Reviews, 2016, 45(12): 3353–3376 https://doi.org/10.1039/C5CS00599J
25
W Schwieger, A G Machoke, B Reiprich, T Weissenberger, T Selvam, M Hartmann. Hierarchical zeolites. In: Zeolites in Catalysis: Properties and Applications. Cambridge: The Royal Society of Chemistry, 2017, 103–145
26
W J Roth, B Gil, W Makowski, B Marszalek, P Eliášová. Layer like porous materials with hierarchical structure. Chemical Society Reviews, 2016, 45(12): 3400–3438 https://doi.org/10.1039/C5CS00508F
27
J Přech, P Pizarro, D Serrano, J Čejka. From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 2018, 47(22): 8263–8306 https://doi.org/10.1039/C8CS00370J
28
M Choi, K Na, J Kim, Y Sakamoto, O Terasaki, R Ryoo. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249 https://doi.org/10.1038/nature08288
29
A Inayat, I Knoke, E Spiecker, W Schwieger. Assemblies of mesoporous FAU-type zeolite nanosheets. Angewandte Chemie International Edition, 2012, 51(8): 1962–1965 https://doi.org/10.1002/anie.201105738
30
X Zhang, D Liu, D Xu, S Asahina, K A Cychosz, K V Agrawal, Y Al Wahedi, A Bhan, S Al Hashimi, O Terasaki, M Thommes, M Tsapatsis. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science, 2012, 336(6089): 1684–1687 https://doi.org/10.1126/science.1221111
31
A I Lupulescu, J D Rimer. Tailoring silicalite-1 crystal morphology with molecular modifiers. Angewandte Chemie International Edition, 2012, 51(14): 3345–3349 https://doi.org/10.1002/anie.201107725
32
G Bergerhoff, H Koyama, W Nowacki. On the crystal structure of the minerals from the chabazite and faujasite groups. Cellular and Molecular Life Sciences, 1956, 12(11): 418–419 (in German) https://doi.org/10.1007/BF02157360
33
G Bergerhoff, W H Baur, W Nowacki. Über die kristallstrukturen des faujasits. Neues Jahrbuch für Mineralogie Monatshefte, 1958, 198: 193–200
34
R Barrer. The separation of molecules with the help of crystal sieves. Brennstoff-Chemie, 1954, 35: 325–334 (in German)
35
D W Breck, E Flanigen. Synthesis and properties of union carbide zeolites L, X and Y. Molecular sieves, 1968: 47–60
36
G T Kerr. Chemistry of crystalline aluminosilicates. V. Preparation of aluminum-deficient faujasites. Journal of Physical Chemistry, 1968, 72(7): 2594–2596 https://doi.org/10.1021/j100853a058
37
P K Maher, C V McDaniel. Zeolite z-14us and method of preparation thereof. US Patent, 3 293 192, 1966-10-20
38
C McDaniel, P Maher. New ultrastable form of Faujasite. In: Molecular Sieves. London: Society of Chemical Industry, 1968, 186–194
39
R C Hansford, J W Ward. The nature of active sites on zeolites: VII. Relative activities of crystalline and amorphous alumino-silicates. Journal of Catalysis, 1969, 13(3): 316–320 https://doi.org/10.1016/0021-9517(69)90406-0
40
G T Kerr. Chemistry of crystalline aluminosilicates. VI. Preparation and properties of ultrastable hydrogen zeolite Y. Journal of Physical Chemistry, 1969, 73(8): 2780–2782 https://doi.org/10.1021/j100842a056
41
G T Kerr, J N Miale, R J Mikovsky. Hydrothermally stable catalysts of high activity and methods for their preparation. US Patent, 3 493 519, 1970-02-03
K Tsutsumi, H Kajiwara, H Takahashi. Characteristic studies on dealumination of faujasite-type zeolite. Bulletin of the Chemical Society of Japan, 1974, 47(4): 801–805 https://doi.org/10.1246/bcsj.47.801
44
U Lohse, G Engelhardt, V Patzelova. Adsorption of n-hexane on H-Y and on deep bed treated dealuminated Y zeolites. Zeolites, 1984, 4(2): 163–167 https://doi.org/10.1016/0144-2449(84)90055-1
U Lohse, H Stach, H Thamm, W Schirmer, A Isirikjan, N Regent, M Dubinin. Dealuminated molecular sieves of the type Y determination of the micron secondary pore volume by adsorption measurements. Zeitschrift fur Anorganische und Allgemeine Chemie, 1980, 460(1): 179–190 (in German) https://doi.org/10.1002/zaac.19804600117
47
G Skeels, D Breck. Zeolite chemistry V-substitution of silicon for aluminum in zeolites via reaction with aqueous fluorosilicate. In: Proceedings of 6th International Zeolite Conference. London: Butterworth & Co., Ltd., 1984, 87
48
H K Beyer, I Belenykaja. A new method for the dealumination of faujasite-type zeolites. In: Studies in Surface Science and Catalysis. 5th ed. Amsterdam: Elsevier, 1980, 203–210
49
Z Qin, K A Cychosz, G Melinte, H El Siblani, J P Gilson, M Thommes, C Fernandez, S Mintova, O Ersen, V Valtchev. Opening the cages of faujasite-type zeolite. Journal of the American Chemical Society, 2017, 139(48): 17273–17276 https://doi.org/10.1021/jacs.7b10316
50
K P de Jong, J Zečević, H Friedrich, P E de Jongh, M Bulut, S Van Donk, R Kenmogne, A Finiels, V Hulea, F Fajula. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angewandte Chemie, 2010, 122(52): 10272–10276 https://doi.org/10.1002/ange.201004360
51
R Van Mao. Selective removal of silicon from zeolite frameworks using sodium carbonate. Journal of Materials Chemistry, 1994, 4(4): 605–610 https://doi.org/10.1039/jm9940400605
52
J García-Martínez, M Johnson, J Valla, K Li, J Y Ying. Mesostructured zeolite Y-high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2012, 2(5): 987–994 https://doi.org/10.1039/c2cy00309k
53
Y Tao, H Kanoh, K Kaneko. Uniform mesopore-donated zeolite Y using carbon aerogel templating. Journal of Physical Chemistry B, 2003, 107(40): 10974–10976 https://doi.org/10.1021/jp0356822
54
H Chen, J Wydra, X Zhang, P S Lee, Z Wang, W Fan, M Tsapatsis. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393 https://doi.org/10.1021/ja2046815
55
J Zhang, S Bai, Z Chen, Y Wang, L Dong, H Zheng, F Cai, M Hong. Core-shell zeolite Y with ant-nest like hollow interior constructed by amino acids and enhanced catalytic activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(39): 20757–20764 https://doi.org/10.1039/C7TA05048H
56
J Zhao, Y Yin, Y Li, W Chen, B Liu. Synthesis and characterization of mesoporous zeolite Y by using block copolymers as templates. Chemical Engineering Journal, 2016, 284: 405–411 https://doi.org/10.1016/j.cej.2015.08.143
57
S Liu, X Cao, L Li, C Li, Y Ji, F S Xiao. Preformed zeolite precursor route for synthesis of mesoporous X zeolite. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 318(1): 269–274 https://doi.org/10.1016/j.colsurfa.2008.01.002
58
M Khaleel, A J Wagner, K A Mkhoyan, M Tsapatsis. On the rotational intergrowth of hierarchical FAU/EMT zeolites. Angewandte Chemie International Edition, 2014, 53(36): 9456–9461 https://doi.org/10.1002/anie.201402024
59
F Delprato, L Delmotte, J Guth, L Huve. Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates. Zeolites, 1990, 10(6): 546–552 https://doi.org/10.1016/S0144-2449(05)80310-0
60
M Matsukata, K Kizu, M Ogura, E Kikuchi. Synthesis of EMT zeolite by a steam-assisted crystallization method using crown ether as a structure-directing agent. Crystal Growth & Design, 2001, 1(6): 509–516 https://doi.org/10.1021/cg015546r
61
O Terasaki, T Ohsuna, V Alfredsson, J Bovin, D Watanabe, S W Carr, M W Anderson. Observation of spatially correlated intergrowths of faujasitic polytypes and the pure end members by high-resolution electron microscopy. Chemistry of Materials, 1993, 5(4): 452–458 https://doi.org/10.1021/cm00028a010
62
M M J Treacy, J M Newsam, R A Beyerlein, M E Leonowicz, D E W Vaughan. The structure of zeolite CSZ-1 interpreted as a rhombohedrally distorted variant of the faujasite framework. Journal of the Chemical Society. Chemical Communications, 1986, (15): 1211–1213 https://doi.org/10.1039/c39860001211
63
C Julius. ZSM-2 zeolite and preparation thereof. US Patent, 3 411 874, 1968-11-19
64
G T Kokotailo, J Ciric. Synthesis and structural features of zeolite ZSM-3. In: Molecular Sieve Zeolites-I. Washington, D.C.: American Chemical Society, 1974, 109–121
65
J Newsam, M Treacy, D Vaughan, K Strohmaier, W Mortier. The structure of zeolite ZSM-20: Mixed cubic and hexagonal stackings of faujasite sheets. Journal of the Chemical Society. Chemical Communications, 1989, (8): 493–495 https://doi.org/10.1039/c39890000493
66
B Wang, P K Dutta. Synthesis method for introducing mesoporosity in a faujasitic-like zeolite system from a sodium aluminosilicate gel composition. Microporous and Mesoporous Materials, 2017, 239: 195–208 https://doi.org/10.1016/j.micromeso.2016.10.008
67
M Choi, H S Cho, R Srivastava, C Venkatesan, D H Choi, R Ryoo. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723 https://doi.org/10.1038/nmat1705
68
K Cho, H S Cho, L C De Menorval, R Ryoo. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chemistry of Materials, 2009, 21(23): 5664–5673 https://doi.org/10.1021/cm902861y
69
G V Shanbhag, M Choi, J Kim, R Ryoo. Mesoporous sodalite: A novel, stable solid catalyst for base-catalyzed organic transformations. Journal of Catalysis, 2009, 264(1): 88–92 https://doi.org/10.1016/j.jcat.2009.03.014
70
L Liu, H Wang, R Wang, C Sun, S Zeng, S Jiang, D Zhang, L Zhu, Z Zhang. N-Methyl-2-pyrrolidone assisted synthesis of hierarchical ZSM-5 with house-of-cards-like structure. RSC Advances, 2014, 4(41): 21301–21305 https://doi.org/10.1039/C4RA02022G
71
A I Lupulescu, M Kumar, J D Rimer. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture. Journal of the American Chemical Society, 2013, 135(17): 6608–6617 https://doi.org/10.1021/ja4015277
72
J Rimer, M Kumar, R Li, A Lupulescu, M Oleksiak. Tailoring the physicochemical properties of zeolite catalysts. Catalysis Science & Technology, 2014, 4(11): 3762–3771 https://doi.org/10.1039/C4CY00858H
73
G Rioland, S Albrecht, L Josien, L Vidal, T J Daou. The influence of the nature of organosilane surfactants and their concentration on the formation of hierarchical FAU-type zeolite nanosheets. New Journal of Chemistry, 2015, 39(4): 2675–2681 https://doi.org/10.1039/C4NJ02137A
74
L Wang, S Sang, S Meng, Y Zhang, Y Qi, Z Liu. Direct synthesis of Zn-ZSM-5 with novel morphology. Materials Letters, 2007, 61(8-9): 1675–1678 https://doi.org/10.1016/j.matlet.2006.07.097
75
A Inayat, C Schneider, W Schwieger. Organic-free synthesis of layer-like FAU-type zeolites. Chemical Communications, 2015, 51(2): 279–281 https://doi.org/10.1039/C4CC07947G
76
X Fu, X Sheng, Y Zhou, Z Fu, S Zhao, Z Zhang, Y Zhang. One-step synthesis of hierarchical aluminosilicates using alkoxy-functionalized ionic liquid as a novel template. New Journal of Chemistry, 2016, 40(7): 6036–6045 https://doi.org/10.1039/C5NJ02927A
77
N Hanif, M W Anderson, V Alfredsson, O Terasaki. The effect of stirring on the synthesis of intergrowths of zeolite Y polymorphs. Physical Chemistry Chemical Physics, 2000, 2(14): 3349–3357 https://doi.org/10.1039/b002314k
78
M W Anderson, K S Pachis, F Prébin, S W Carr, O Terasaki, T Ohsuna, V Alfreddson. Intergrowths of cubic and hexagonal polytypes of faujasitic zeolites. Journal of the Chemical Society. Chemical Communications, 1991, (23): 1660–1664 https://doi.org/10.1039/C39910001660
79
J P Arhancet, M E Davis. Systematic synthesis of zeolites that contain cubic and hexagonal stackings of faujasite sheets. Chemistry of Materials, 1991, 3(4): 567–569 https://doi.org/10.1021/cm00016a001
80
S L Burkett, M E Davis. Structure-directing effects in the crown ether-mediated syntheses of FAU and EMT zeolites. Microporous Materials, 1993, 1(4): 265–282 https://doi.org/10.1016/0927-6513(93)80070-B
81
L Belandria, C Gonzalez, F Aguirre, E Sosa, A Uzcátegui, G González, J Brito, S Gonzalez-Cortes, F Imbert. Synthesis, characterization of FAU/EMT intergrowths and its catalytic performance in n-pentane hydroisomerization reaction. Journal of Molecular Catalysis A Chemical, 2008, 281(1-2): 164–172 https://doi.org/10.1016/j.molcata.2007.09.011
A T B Ginter, C J Radke. Molecular sieves. In: Synthesis of Microporous Materials. New York: Van Nostrand Reinhold, 1992
84
M Khaleel, W Xu, D A Lesch, M Tsapatsis. Combining pre-and post-nucleation Trajectories for the synthesis of high FAU-content Faujasite nano-crystals from organic-free sols. Chemistry of Materials, 2016, 28(12): 4204–4213 https://doi.org/10.1021/acs.chemmater.6b00588
85
T Tang, L Zhang, H Dong, Z Fang, W Fu, Q Yu, T Tang. Organic template-free synthesis of zeolite Y nanoparticle assemblies and their application in the catalysis of the Ritter reaction. RSC Advances, 2017, 7(13): 7711–7717 https://doi.org/10.1039/C6RA27129D
86
X Jia, L Han, Y Ma, S Che. Additive-free synthesis of mesoporous FAU-type zeolite with intergrown structure. Science China Materials, 2018, 61(8): 1095–1100 https://doi.org/10.1007/s40843-017-9227-y
87
Y Du, Q Kong, Z Gao, Z Wang, J Zheng, B Qin, M Pan, W Li, R Li. Flower-like hierarchical Y with dramatically increased external surface: A potential catalyst contributing to improving pre-cracking for bulky reactant molecules. Industrial & Engineering Chemistry Research, 2018, 57(22): 7395–7403 https://doi.org/10.1021/acs.iecr.8b00751
88
L Liu, H Wang, Z Wang, L Zhu, L Huang, L Yu, J Fan, Y Yao, S Liu, J Zou, X Zeng. Evolving mechanism of organotemplate-free hierarchical FAU zeolites with house-of-card-like structures. Chemical Communications, 2018, 54(70): 9821–9824 https://doi.org/10.1039/C8CC05677C
89
S Gaber, D Gaber, I Ismail, S M Alhassan, M Khaleel. Additive-free synthesis of house-of-card faujasite zeolite by utilizing aluminosilicate gel memory. CrystEngComm, 2019, 21(11): 1685–1690 https://doi.org/10.1039/C8CE01804A
90
O G Nik, B Nohair, S Kaliaguine. Aminosilanes grafting on FAU/EMT zeolite: Effect on CO2 adsorptive properties. Microporous and Mesoporous Materials, 2011, 143(1): 221–229 https://doi.org/10.1016/j.micromeso.2011.03.002
Y Huang, K Wang, D Dong, D Li, M R Hill, A J Hill, H Wang. Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes. Microporous and Mesoporous Materials, 2010, 127(3): 167–175 https://doi.org/10.1016/j.micromeso.2009.07.026
93
P Mather, J Pilato. Preparation of zeolites. US Patent, 3 808 326, 1974-04-30
94
S Khajavi, F Kapteijn, J C Jansen. Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation. Journal of Membrane Science, 2007, 299(1-2): 63–72 https://doi.org/10.1016/j.memsci.2007.04.027
95
J Weitkamp, R Schumacher. Synthesis, dealumination and physico-chemical characterization of zeolite EMT. In: Proceedings of 9th International Zeolite Conference. Boston: Butterworth-Heinemann, 1993, 353–360
96
D Breck. Zeolite Molecular Sieves: Structure, Chemistry, and Use. 99th ed. New York: John Wiley and Sons Inc., 1974, 1–784
97
P Scardi, M Leoni, K R Beyerlein. On the modelling of the powder pattern from a nanocrystalline material. Zeitschrift für Kristallographie. Crystalline Materials, 2011, 226(12): 924–933 https://doi.org/10.1524/zkri.2011.1448
98
M Thommes, K Kaneko, A V Neimark, J P Olivier, F Rodriguez-Reinoso, J Rouquerol, K S Sing. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9-10): 1051–1069 https://doi.org/10.1515/pac-2014-1117